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Abstract—A comparison is provided between multi-channel
Wiener filter (MWF) implementations for noise reduction (NR)
using overlap-save (OLS) and weighted overlap-add (WOLA)
filter banks. Simulations are used to show the effect of con-
straining the filters in an OLS-based implementation as well as
differences in the estimated correlation matrices and NR filters
using different filter banks. Overall, the WOLA-based imple-
mentation provides better NR performance in comparison to the
OLS-based implementation. The rectangular analysis window
and constraining the filter in the OLS-based implementation
deteriorates the performance of the MWF.

Index Terms—Noise reduction, multi-channel Wiener filter,
overlap-save, weighted overlap-add, filter banks.

I. INTRODUCTION

Noise reduction (NR) is used to enhance a desired speech
signal in today’s speech communication systems, including,
but not limited to, hands-free telephony, hearing aids, auto-
matic speech recognition and teleconferencing. By using mul-
tiple microphones it is possible to exploit spatial characteristics
of an acoustic scenario. Such multi-channel NR generally
results in a better performance compared to single-channel
NR, particularly when the desired speech and noise sources
are spatially separated.

A widely used NR technique is the multi-channel Wiener
filter (MWF) [1]. Adaptive beamforming techniques, such
as the minimum variance distortionless response (MVDR)
beamformer are also commonly used [2]. Such techniques
usually rely on an overlap-save (OLS) or weighted overlap-
add (WOLA) filter bank to perform efficient time-domain
or frequency-domain (subband) filtering, respectively [3]–[5].
WOLA filter banks require analysis and synthesis windows
which reduce the effects of circular convolution and improve
side-lobe rejection in the frequency domain. OLS filter banks
are implemented with a rectangular analysis window [4]. In
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OLS filter banks, constrained filters have been implemented,
where the filtering operation performed in the frequency-
domain is constrained to correspond exactly to a time-domain
filtering operation [4], [6]. However, the additional constraints
can introduce dependencies across frequency bins [7]. Such
effects are usually not a problem in some applications, such
as acoustic echo cancellation [8]–[10]. Alternatively, uncon-
strained filters have been used in OLS filter banks, which
cannot fully prevent circular convolution effects [4], [11],
[12]. Multiple WOLA-based MWF implementations have been
reported in the literature, however a comparison between
WOLA- and OLS-based MWF has not been reported. In this
paper, the performance of MWF based NR using WOLA,
unconstrained OLS (uOLS) and constrained OLS (cOLS) filter
banks is studied. Simulations are used to show the effect
of constraining the filter in an OLS-based implementation as
well as differences in the estimated correlation matrices and
NR filters using different filter banks. Overall, the WOLA-
based implementation provides better NR performance in
comparison to the OLS-based implementation. The rectangular
analysis window and constraining the filter in the OLS-based
implementation deteriorates the performance of the MWF.
The paper is organized as follows. In Section II the signal
model is stated and the MWF is reviewed. The WOLA-,
uOLS- and cOLS-based MWF implementations are described
in Section III. Simulations are presented in Section IV and
Section V concludes the paper.

II. SIGNAL MODEL AND MULTI-CHANNEL WIENER FILTER

An m× 1 multi-microphone signal vector in the short-time
Fourier transform (STFT) domain, i.e. after an OLS or WOLA
analysis filter bank, as defined in Section III, is expressed as
follows

y(κ, l) = s(κ, l) + n(κ, l) (1)

where s and n represent the desired speech and noise compo-
nents, respectively, l is the time frame index, κ the frequency
bin (subband) index and m the number of microphones. The
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microphone, (unknown) speech and noise correlation matrices
are defined, respectively, as

R̄yy(κ, l) = E{y(κ, l)yH(κ, l)} (2)

R̄ss(κ, l) = E{s(κ, l)sH(κ, l)} (3)

R̄nn(κ, l) = E{n(κ, l)nH(κ, l)} (4)

where E{·} is the expected value operator and (·)H is the
complex conjugate transpose operator. It is assumed that
s(κ, l) and n(κ, l) are uncorrelated, and that R̄ss(κ, l) can be
approximated by a rank-1 matrix if there is only one desired
speech source [13].

Using the desired speech component in the first microphone
as desired signal, i.e., d(κ, l) = eT s(κ, l) with e = [1 0]T a
vector with matching dimensions that selects the first column
of a matrix, the MWF is defined as the minimization of the
mean squared error (MSE) between the desired signal and the
filtered microphone signals, i.e., [1], [13].

w̄(κ, l) = arg min
w

E
{∣∣d(κ, l)−w(κ, l)Hy(κ, l)

∣∣2} , (5)

where the solution to this minimization problem is given by

w̄(κ, l) = R̄−1
yy (κ, l)R̄ss(κ, l)e. (6)

The desired signal estimate is obtained by filtering the
frequency-domain multi-microphone signal, i.e.,

d̂(κ, l) = w̄H(κ, l)y(κ, l). (7)

Given that R̄ss is not directly observable, ”speech-plus-noise”
and ”noise-only” correlation matrices can be estimated using
a voice activity detector (VAD), as follows

R̂yy(κ, l) = λR̂yy(κ, l − 1) + (1− λ)y(κ, l)yH(κ, l) (8)

R̂nn(κ, l) = λR̂nn(κ, l − 1) + (1− λ)y(κ, l)yH(κ, l). (9)

Here λ is a forgetting factor that is chosen according to
the time variation of the signal statistics, e.g., for long-term
estimates λ ≈ 1 to mainly capture spatial coherence between
the microphone signals. With (8) and (9), an estimate of the
speech correlation matrix can be obtained based on a joint
diagonalization of the matrix pencil {R̂yy(κ, l), R̂nn(κ, l)}
[13], [14] ,

R̂yy(κ, l) = Q̂(κ, l)Σ̂yy(κ, l)Q̂H(κ, l) (10)

R̂nn(κ, l) = Q̂(κ, l)Σ̂nn(κ, l)Q̂H(κ, l)

where Q̂ is an invertible matrix and Σ̂yy =
diag{σ̂y1

, ..., σ̂ym
} and Σ̂nn = diag{σ̂n1

, ..., σ̂nm
} are

diagonal matrices. The operator diag{·} arranges the
elements of its argument in a diagonal matrix. A rank-1
speech correlation matrix estimate R̂ss is then computed as

R̂ss(κ, l) = Q̂(κ, l)diag{σ̂y1 − σ̂n1 , 0, . . . , 0}Q̂H(κ, l) (11)

where σ̂y1
and σ̂n1

are the first diagonal elements of Σ̂yy

and Σ̂nn, respectively, which correspond to the largest ratio
σ̂yi

/σ̂ni
. Using (11), the expression in (6) then becomes

ŵ(κ, l) = Q̂−Hdiag
{

1− σ̂n1

σ̂y1

, 0, . . . , 0

}
Q̂He, (12)

which can then replace w̄(κ, l) in (7).

III. OLS- AND WOLA-BASED IMPLEMENTATIONS

For each implementation it is assumed that an R samples
long analysis window ğa with a 50% overlap is used to
transform time-domain signals to the STFT domain, e.g., the
lth time frame of the mth-microphone signal can be defined
in the discrete-time domain as

y̆m(n, l) = ym

(
n+ l

R

2

)
ga(n) (13)

where the time index n ∈ {0, 1, . . . , R − 1} and l ∈
{0, 1, . . . , L−1}, where L is the total number of time frames.
The discrete Fourier transform (DFT) matrix FR of size R×R
is then used to obtain the STFT representation. Similarly,
synthesis windows ğs are used to obtain the estimated signal.
In weighted overlap-add (WOLA) filter banks, ğa and ğs

are carefully selected window functions, i.e., Hann, squared-
root Hann, Hamming, etc. Squared-root Hann windows are
commonly used because they allow perfect reconstruction. The
windows smooth out the effects of the circular convolution and
improve the frequency selectivity. The desired signal estimate
in the time domain using a WOLA filter bank is obtained by
first using the inverse of the DFT matrix FR and then applying
a synthesis window, as follows

d̆WOLA(l) = ĞWOLA
s F−1

R d̂T (l) (14)

with
d̂(l) =

[
d̂(0, l) . . . d̂(R− 1, l)

]
(15)

an R×1 vector containing all the frequency bins of the desired
signal at time frame l, ĞWOLA

s = diag{ğs} with ğs an
R × 1 vector containing a synthesis window. The estimated
signal is obtained in the discrete-time domain by adding the
L overlapping windowed frames as

d̆(n) =

L−1∑
l=0

d̂

(
n− lR

2
, l

)
gs(n). (16)

Note that the operations in WOLA filter banks do not exactly
correspond to a time-domain convolution, however the circu-
lar convolution effects are limited due to smooth windows.
Alternatively, an overlap-save (OLS) filter bank can be im-
plemented, where a rectangular window is used (i.e. ğa is a
vector of ones) and the first R

2 samples of the time-domain
desired signal estimate are discarded as [4]

d̆OLS(l) = ĞOLS
s F−1

R d̂T (l) (17)

where ĞOLS
s =

[
0R

2
0R

2

0R
2

IR
2

]
, 0R

2
and IR

2
are all-zero and

identity matrices of size R
2 ×

R
2 , respectively. This method is

referred to as unconstrained-OLS (uOLS). Note that the cir-
cular convolution effects are not completely avoided because
the estimated filters are not constrained, i.e., no changes to
(12) are included. To avoid such effects, each NR filter can
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be replaced by a subspace projection whose last R
2 samples in

the time domain are zero, as follows [6]

ŴcOLS1(l)
m×R

=
(
FRĞcOLS1

s F−1
R ŴT (l)

)T
, (18)

with

Ŵ(l)
m×R

=
[
ŵ(0, l) . . . ŵ(R− 1, l)

]
, (19)

ŴcOLS1(l)
m×R

=
[
ŵcOLS1(0, l) . . . ŵcOLS1(R− 1, l)

]
(20)

and ĞcOLS1
s =

[
IR

2
0R

2

0R
2

0R
2

]
. The columns in (19) and (20) are

the filters per frequency bin which are used to estimate the
desired signal as in (7). The projection is performed so that
the operation exactly corresponds to a linear convolution in the
time domain. This method is referred to as constrained-OLS
(cOLS1). Alternatively to (18), the constrained filter ŵcOLS2(l)
can be computed as

ŴcOLS2(l)
m×R

=

(
FR

[
F−1

R
2

CR
2 ×RŴT (l)

0R
2 ×m

])T

(21)

where CR
2 ×R is a R

2 × R matrix that selects every second
frequency bin (0, 2, 4, . . . ) of Ŵ(l) in (19) and ŴcOLS2(l)
is defined similarly to (20). This approach keeps the selected
frequency bin values and the remaining ones are interpolated
by the inverse DFT and DFT matrices, based on the constraint
in the time domain, i.e., the last R

2 samples of the time-
domain filter must be zero. The filters obtained with the cOLS-
based implementations correspond to an exact time domain
convolution, however constraining the filter changes the filter
coefficients, hence they are not optimal per frequency bin
anymore, i.e., they are not the optimal solution to (5).
Table I shows a summary of the methods described in this
section.

IV. SIMULATIONS

A. Scenario description

The performance of the MWF implementations using
WOLA, uOLS and cOLS was assessed in an scenario with a 3-
microphone linear array placed in a room in front of a desired
source and a localized noise source. Microphone signals were
generated using room impulse responses (RIR) simulated with
the randomized image method described in [15]. The sampling
frequency was 16 kHz, the length of the RIRs was set to 512
samples and the room’s reverberation time was T60 ≈ 0.11 s.
The localized noise source played back a white noise signal
which was then convolved with the RIRs for each microphone.
The following scenarios are defined based on the signals used:

• Scenario 1 The desired source played back an ON-OFF
speech signal convolved with the corresponding RIR for
each microphone and a localized source was included.

• Scenario 2 The desired source played back an ON-OFF
white noise signal convolved with the corresponding RIR
for each microphone and a localized source was included.

• Scenario 3 The desired source played back an ON-OFF
speech signal convolved with the corresponding RIR for
each microphone and a localized source was included.
The desired speech source is located at 135◦ with respect
to the centre of the array and a noise source at 25◦.

B. Correlation matrices estimates

The estimates of the power spectral density for each chan-
nel, i.e., the diagonal elements of the correlation matrices
R̂yy and R̂nn for all frequency bins, are shown in Fig. 1
for different implementations using Scenario 1. A significant
difference is observed above 4 kHz where in the OLS-based
implementations an almost flat response is found as opposed
to the peaks observed in the WOLA-based implementation.
The differences can be explained by the high amplitude of the
side lobes in the rectangular analysis window used by the OLS
analysis filter bank.

C. Estimated filters

The estimated filters for the first channel using different
implementations are shown in Fig. 2 (similar results were
obtained for the remaining channels, but are not shown for
brevity) using Scenario 2. Differences in the filters are mainly
observed below 250 Hz and above 4 kHz. In both cases the
window function in the WOLA-based implementation pro-
vides better frequency selectivity, and this can be seen in the
magnitude of the frequency response of the filters. The flat re-
sponses above 4 kHz in the OLS-based MWF implementation
are likely due to the poor resolution of the rectangular analysis
window, which causes estimation errors in the correlation
matrices. This leads to no differences in magnitude in this
frequency range, which causes the magnitude response of the
estimated filters to be flat. It is observed that constraining
the filters in the OLS-based implementations smooths the
magnitude of their frequency responses.

D. Directivity patterns, DFT size and iSNR

The SNR improvement (∆SNR = oSNR − iSNR) was
computed for MWF implementations using WOLA, uOLS,
cOLS and cOLS2 with different DFT sizes. The input and
output SNRs are denoted by iSNR and oSNR, respectively.
Fig. 3 shows the ∆SNR for different MWF implementations
using Scenario 1. For comparison the localized white noise
source was removed and uncorrelated white noise was added
to the microphone signals. In both scenarios the WOLA-
based implementation outperforms the uOLS- and cOLS-based
implementations. The performance of the WOLA- and uOLS-
based implementations improves when correlated noise is
used, whereas the performance of the cOLS-based implemen-
tations does not improve. In Fig. 4A the oSNR is shown when
different iSNRs are used. The filter length was set to 512
samples, which is equal to the RIRs length. It can be seen
that the WOLA-based implementation outperforms all other
implementations for all iSNR.
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WOLA uOLS cOLS1 cOLS2
Obtain STFT representation using the analysis window

ğWOLA
a ğOLS

a ğOLS
a ğOLS

a

Update R̂yy(κ, l) and R̂nn(κ, l) using (8) and (9)
Compute ŵ(κ, l) based on GEVD of {R̂yy(κ, l), R̂nn(κ, l)} by using (12)

ŵWOLA(κ, l) = ŵ(κ, l) ŵuOLS(κ, l) = ŵ(κ, l)

ŴcOLS1(l) =(
FRĞcOLS1

s F−1
R ŴT (l)

)T ŴcOLS2(l) =(
FR

[
F−1

R
2

CR
2
×R

ŴT (l)

0R
2
×m

])T

d̂(κ, l) = ŵH
WOLA(κ, l)y(κ, l) d̂(κ, l) = ŵH

uOLS(κ, l)y(κ, l) d̂(κ, l) = ŵH
cOLS1(κ, l)y(κ, l) d̂(κ, l) = ŵH

cOLS2(κ, l)y(κ, l)

d̆WOLA(l) = ĞWOLA
s F−1

R d̂(l) d̆uOLS(l) = ĞOLS
s F−1

R d̂(l) d̆cOLS1(l) = ĞOLS
s F−1

R d̂(l) d̆cOLS2(l) = ĞOLS
s F−1

R d̂(l)

TABLE I: Summary of the WOLA-, uOLS-, cOLS1- and cOLS2-based MWF implementations to obtain the NR filters and
the desired speech signal.
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Fig. 1: Diagonal elements of the estimated correlation matrices R̂yy and R̂nn for all frequency bins for WOLA- and
OLS-based implementations using Scenario 1.
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Fig. 2: Filters applied to the first channel using WOLA-, uOLS-, cOLS1- and cOLS2-based implementations using Scenario 2.
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Fig. 3: ∆SNR against DFT size using Scenario 1 when A
uncorrelated noise is used in the microphone signals. B
localized white noise source is used in the microphone
signals. The length of the simulated RIRs is Lf = 512.

Directivity patterns of the estimated filters were computed
for each implementation as

H(κ, θ) = wH(κ)a(κ, θ) (22)

where a(κ, θ) is an m × 1 vector that contains the acoustic
transfer functions evaluated in frequency bin κ from a source
located at an angle θ to each microphone in the array. The
average of the magnitudes over frequency bins κ for WOLA-,
uOLS- and cOLS1-based implementations are shown in
Fig. 4B for Scenario 3. It is observed that the WOLA-based
implementation is the most effective in terms of reducing the
contribution from the noise source, where a low magnitude
response in the noise source direction is observed. The
uOLS-based implementation’s directivity pattern provides the
largest gain for the desired speech source but its rejection
of the noise source contribution is similar to that of the
cOLS1-based implementation.

V. CONCLUSIONS

The WOLA-based MWF implementation outperforms the
uOLS- and cOLS-based implementations in terms of SNR
and its directivity pattern rejects better the contributions from
the localized noise source. The relative performance of the
methods does not depend on the iSNR used. The rectangular
analysis window used in the uOLS-based implementation
prevents this method from achieving a similar performance
to the WOLA-based implementation. The cOLS-based imple-
mentation performs poorer than the WOLA- and uOLS-based
implementations in terms of NR. The MWF obtained with
the WOLA-based implementation is optimal in each frequency
bin which is not the case for cOLS-based implementations as
the filter coefficients are changed. Similarly, the uOLS-based
implementation is also optimal in each frequency bin but the
use of a rectangular analysis window harms its performance.
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Fig. 4: A oSNR for different iSNRs when a localized white
noise source is used in the microphone signals. The filter

length was 512 samples. B Directivity patterns of the
WOLA-, uOLS- and cOLS1-based MWF implementations

using Scenario 3. The dashed lines indicate the direction of
the desired speech and noise sources.
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