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Abstract—With a microphone array, spatial diversity can
be exploited to estimate time-frequency masks that effectively
suppress interfering speakers as well as noise. Here, we propose
a deep learning approach where the signal components are distin-
guished based on the associated directions of arrival. To capture
the target signal spectrogram more accurately, the estimation
can be performed for each subband separately. In order to
also take advantage of cross-band dependencies, we additionally
consider a combined subband and full-band architecture. Our
evaluation indicates that this combination consistently improves
the performance in terms of instrumental quality metrics as
compared to a pure subband or full-band method. Further,
the comparison with two baseline approaches demonstrates the
effectiveness of the location based deep learning approach.

Index Terms—source separation, speech enhancement, time-
frequency masking, neural networks, direction-of-arrival

I. INTRODUCTION

Time-frequency (TF) masks identify short-time Fourier
transform (STFT) bins that are dominated by a signal of inter-
est, which makes them an effective tool for tasks like speech
enhancement and source separation [1]. Whereas they can also
be acquired with unsupervised clustering approaches like [2],
[3], the focus of this paper is on deep neural network (DNN)
based mask estimation. When multiple microphones are avail-
able, spatial information can be exploited for this purpose. Be-
cause source locations are not specific to one signal type, e. g.,
speech, they are highly useful to distinguish components in a
mixture of contributions from multiple sources. For compact
arrays, it is primarily the phase component which contains the
spatial information. This is exploited, e. g., in [4], [5]. Whereas
[4] considers only phase, a combination of magnitude and
phase is used in [5]. In [6], where this aspect is studied more
closely, no significant improvement is observed when magni-
tude is incorporated in addition to the spatial information.

Approaches like [4]–[6] mix the information from all fre-
quencies. This mixing can, however, cause a loss of the TF
fine structure of the resulting mask. A recent single-speaker
approach for denoising that considers each frequency indepen-
dently is [7]. With a long short-term memory (LSTM) network,
the authors report a performance that is at least comparable
to other state-of-the-art approaches, although cross-frequency
information is neglected entirely.

Thus, the aforementioned approaches can be classified as
being either full-band (FB) ([4]–[6]), or subband (SB) ([7])
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methods. In this work, we propose convolutional neural net-
work (CNN)-based architectures of both classes and, since
there are arguments in favor of both, consider a combination of
the two. In contrast to [5], [7], where noise suppression is the
primary focus, our goal is the separation of (localized) sources.
An LSTM is used to exploit temporal context. Nevertheless, in
contrast to [6] where models are trained for specific scenarios,
we do not require assumptions regarding, e. g., the movement
of sources. This is achieved by using the source directions of
arrival (DOAs) to distinguish between the components.

Following the problem formulation in Sec. II, we present
three variants of the proposed DNN in Sec. III: the FB, SB, and
mixed mask estimators. The evaluation results in Sec. IV show
that whereas the SB approach best captures the fine structure of
the target signal, the mixed approach yields the highest scores
in terms of instrumental metrics. Sec. V concludes the paper.

II. MASK BASED SPEECH SEPARATION

A. Signal Model and Problem Statement
In the STFT domain, the signal at the n-th microphone is de-

noted by Yn(µ,λ), where µ=0, . . . ,M−1 is the frequency in-
dex, and λ the frame index. The N microphones pick up a mix-
ture of filtered versions of the J dry source signals Sj(µ,λ),
where 1≤j≤J , and an additive noise Vn(µ,λ). Denoting the
direct path components by Sdir

j,n(µ,λ), and the reverberation
components by Srev

j,n (µ,λ), we obtain the signal model
Yn(µ, λ) =

∑
j

(
Sdir
j,n(µ, λ) + Srev

j,n (µ, λ)
)

+ Vn(µ, λ). (1)
The direct path component differs from the dry source signal
only in terms of a time delay, and an attenuation factor. There-
fore, our aim is to extract all direct path components Sdir

j,1(µ,λ)
at the reference microphone n=1 (this selection is arbitrary).

B. Time-Frequency Masking
We define a mask Mj(µ,λ) to quantify the activity of the

j-th source at the corresponding TF point. In this work, we
employ the most straightforward approach to obtain a target
speech estimate: the mask is multiplied with the reference mi-
crophone signal directly, i. e., Ŝdir

j,1(µ,λ)=Mj(µ,λ)·Y1(µ,λ).
An overview of various suitable masks can be found, e. g.,

in [1]. Without loss of generality, we consider, here, the
(bounded) squared spectral magnitude mask (SSMM)

Mj(µ, λ) = min
{∣∣γjSdir

j,1(µ, λ)
∣∣2/∣∣Y1(µ, λ)

∣∣2; 1
}
. (2)

By defining the mask w. r. t. the squared magnitudes, unwanted
components are suppressed more vigorously, albeit at the cost
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Fig. 1: FB-MEst and SB-MEst architectures for TF mask estimation (MEst).
Connections ( ) indicate layers that share the same trainable parameters.

of more speech distortion compared to, e. g., the SMM, or the
ideal ratio mask (IRM). Additionally, for a more consistent dis-
tribution of the target mask values across different source-array
distances and reverberation levels, we use the normalization

γj =

√∑
µ,λ,n|Sdir

j,n(µ,λ)+S
rev
j,n(µ,λ)|2∑

µ,λ,n|Sdir
j,n(µ,λ)|2

(3)

on the direct path component. This permits us to set upper and
lower mask bounds without compromising the suppression of
unwanted components in adverse conditions (see Sec. III-E).

III. CNN FOR MULTISOURCE TF MASK ESTIMATION

The angular space around the array is partitioned into a set
of I discrete DOAs. For each direction, one TF mask will be
generated to recover the impinging direct path sound, while
suppressing noise, and interference from other directions. The
J localized sources may be uniquely identified by their DOAs.
Using a broadband DOA estimator, such as [8], the required
subset of the I masks can be found by selecting, for each
source, the nearest discrete DOA for which a mask is available.

A. Full-band TF Mask Estimator
The CNN shown in Fig. 1a will be referred to as the full-

band mask estimator (FB-MEst). The vector of microphone
signal phases ∠Y(µ,λ)=[∠Y1(µ,λ), . . . ,∠YN (µ,λ)] serves as
input. Convolutions are applied across the channel dimension,
in the form of 64 frequency independent filters per input map,
each of length 2. Without zero-padding or pooling, the channel
dimension is thus reduced to 1 after N−1 layers. The features
from all frequencies are stacked to one vector of length 64·M ′,
where M ′=M/2+1 is the number of discrete frequencies up
to the Nyquist frequency. Empirically, we find that increasing
the size of the fully connected (FC) and LSTM layers does
not improve the performance. The output consists of I ·M ′

elements, which are divided into the masks for all I DOAs.
Relation to prior work: Essentially, the architecture is iden-

tical to the CNN/LSTM used in [8], which is an extension
of the CNN proposed in [9]. Only the tasks differ: whereas
[8], [9] focus on broadband DOA estimation, FB-MEst takes
advantage of the same DOA framework to acquire masks, i. e.,
narrowband information, that is conditioned on the DOAs.

In [5], the authors of [9] use a similar architecture for
TF masking as well. However, only one mask for separating
speech from noise is estimated. In this regard, FB-MEst can be
seen as an extension of [5] to the multi-speaker case.
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Fig. 2: Mix-MEst: one half of the features based on which the output masks
are computed are obtained following, respectively, the FB and SB approaches.

B. Subband TF Mask Estimator
For acquiring narrowband information, the input for each

individual TF bin is of particular interest. We therefore propose
to leave the frequency structure intact after the convolutional
layers. Thus, in the subband MEst (SB-MEst) architecture de-
picted in Fig. 1b, the information from different frequencies is
not mixed, i. e., cross-band dependencies are neglected. Never-
theless, the task remains the same for each frequency. This is
exploited by tying the trainable parameters across all subbands,
thereby enforcing a more abstract (frequency independent) fea-
ture representation, and reducing the total number of param-
eters. Here, a frequency independent LSTM, for example, is
reasonable as a similar temporal evolution is expected for all
frequencies. Only in the FC layer, we untie the parameters to
account for the frequency dependence of the input.

Without frequency mixing, the FC layer receives 64 (rather
than 64·M ′) features. Therefore, we also set the output size
of this layer to 64 (rather than 512). So as to not constrain the
mask construction, we do not reduce the size of the LSTM.

Relation to prior work: An LSTM network that uses only
subband information is also proposed in [7]. The separation of
multiple speakers, however, is not addressed. In this case, the
trainable parameters are shared across frequency in all layers.
This is practicable under the assumption of a single localized
target component (speech in noise). Because the interchannel
phase differences are dependent on the frequency as well as the
DOA, frequency dependent processing is important, however,
to distinguish between components from different directions.

The distinctness of the DOAs is, on the other hand, ex-
ploited for speaker separation with a binaural setup in [10],
where small frequency blocks are processed with indepen-
dently trained DNNs. Unlike SB-MEst, however, a narrowband
DOA classification is performed, rather an estimation of masks
for DOAs that have been identified in advance.

C. Mixed Full-Band and Subband TF Mask Estimator
By disregarding cross-band dependencies, the SB-MEst ar-

chitecture does not fully exploit all available information. To
address this limitation, we propose a combination of FB-MEst
and SB-MEst, as illustrated in Fig. 2. This will be referred to as
Mix-MEst. As the figure shows, half of the features provided
to the output layer are generated according to the FB-MEst
approach, the other half according to the SB-MEst approach.
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Fig. 3: Two different subarrays ( ) (3 and 9 microphones, respectively) of the
the miniDSP UMA-16 array [15] 16-microphone URA will be considered.

Further, in contrast to SB-MEst, the output layer parameters
are untied so that the cross-band information can be used
differently at each frequency. At high frequencies, for example,
SB information may be less reliable due to spatial aliasing.

Relation to prior work: A different FB and SB combination
is used in the very recently proposed FullSubNet [11]. Instead
of a parallel structure, a cascade is employed: FB output and
SB input are concatenated before the final layers. Since the
approach is used exclusively for single-channel speech en-
hancement, the input consists only of magnitude information.

D. Complexity
The number of multiply-accumulate (MAC) operations per

frame is lowest for FB-MEst (about 10.8×106 for M ′=257,
I=37, and J=2, disregarding convolutional layers), and high-
est for SB-MEst (305×106). Mix-MEst lies in between the
two (94.7×106). Because the trainable parameters are the same
for all subbands, except in the FC layer, the total number of
parameters, in contrast, is lowest for SB-MEst (2.3×106).

E. Training
We generate training data as proposed in [8]. A dynamic

setting is considered, where each talker can be active at differ-
ent times and at different locations. To model this, a Markov
chain Aj(λ) is used to decide when the j-th source is active.
The two states Aj(λ)={1,0}, respectively, indicate activity
and inactivity of source j for time frame λ. During inactivity,
the contribution of this source is set to 0. Here, the probability
for a transition between the two states is chosen so that there is
an average of one transition per 1.5s.

The TIMIT [12] and PTDB-TUG [13] speech databases are
used for the source signals. The location of a source remains
fixed while it is active. A new location (i. e., DOA and source-
array distance) is selected once a previously inactive source
becomes active again (Aj(λ)=1, Aj(λ−1)=0). The training
set includes sequences with both J=1, and J=2 sources.

The source signals are convolved with room impulse re-
sponses (RIRs) that we simulate using [14]. In the simulation,
the source is placed at one of I=37 different azimuth angles
ϕ=0°,5°, . . . ,180°, such that array and sources are coplanar.
Two different array geometries are used (see Fig. 3). To cover a
wide range of acoustic conditions, we consider R=10 different
rooms with reverberation times ranging from T60=0.2s to
0.8s. Further, the number of positions of the array per room
is P=7, and the number of source-array distances per array
position D=4. For the validation, a different set of RIRs is
used. Finally, a spherically isotropic (diffuse), but temporally
uncorrelated noise field is simulated as described in [16]. For
the additive mixing, the sources-to-noise ratio (SNR) is se-
lected randomly between 0dB and 30dB for each mixture.

To permit a satisfactory suppression, it is important to also
capture low mask values accurately. For example, the differ-
ence between 0.01 and 0.10 (20dB) is more significant than
between 0.9 and 1.0 (about 1dB). Therefore, we employ a dB
representation for the target output, based on which the mean
squared error loss is computed as well. However, accurately
estimating very low mask values is neither feasible nor bene-
ficial. Rather, preserving a certain noise floor can help masking
artifacts such as musical tones. Along with the upper bound
of 0dB imposed by (2), we therefore lower bound the mask
values by −40dB. To reflect this, we use an otherwise linear
output activation function that clips values outside this interval.

Although I masks may be obtained in total, only those
output masks that correspond to the true source DOAs are used
to compute the loss. Based on the validation loss, the weight
decay parameter of the AdamW optimizer [17] is set to 0.002
for the 9-mic SB-MEst architecture, and 0.001 for all others.
All training sequences have a length of 2s. We make use of
dropout with rate 0.5, and batch normalization. The ReLU
activation function is used in the hidden layers.

IV. EVALUATION

A. Setup
Microphone signals for the evaluation are generated by addi-

tively mixing J=2 source contributions, and recorded diffuse
noise. The source signals consist of 5 concatenated utterances
of the TSP speech database [18], each of which has been
convolved with a RIR at sampling rate fs = 48kHz. A new
(unique) DOA, and thus a new RIR, is selected with probabil-
ity 50% after each utterance. The resulting mixture is down-
sampled to 16kHz, and transformed into the STFT domain.
The frames of length 512 samples are windowed with a square-
root Hann window (M=512). The frame shift is 160 samples.

The RIRs for azimuth angles ϕ=0°,20°, . . . ,180° were
recorded in a meeting room (T60=660ms) using the miniDSP
UMA-16 array [15]. The source-array distance was 2m. To
obtain diffuse noise, the pub noise signal from the ETSI back-
ground noise database [19] was simultaneously played back
by four loudspeakers located at the corners of a room with
T60≈1s, and recorded using the same array.

To estimate the DOAs, we make use of the CNN/LSTM
broadband DOA estimator of [8]. Being a data-driven ap-
proach, it is relatively robust to reverberation and noise: the
DOA estimation error |ϕ−ϕ̂| does not exceed 5° in 85% of
the frames at the considered noisy conditions (SNR=0dB) for
both arrays. The architecture is equivalent to that of FB-MEst,
except that a DOA classification is performed instead of a TF
mask estimation. The J classes with the highest probability are
used as the DOA estimates, where the number of sources J
is assumed known a-priori. Note that the same DOA estimates
are used for all approaches considered in the following.

B. Baselines
For the comparison with the proposed approaches, i. e., FB-

MEst, which can be seen as a variation of [5], SB-MEst, and
Mix-MEst, we consider the ideal (“oracle”) mask, as well as
two baselines that take advantage of classical DOA estimation
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Fig. 4: The architectures are compared in the first two rows, followed by the
comparison of Mix-MEst with the baseline methods in the bottom two rows.

methods. Thereby, we aim to provide an overview of the re-
spective strengths and weaknesses of these methods.

One approach to acquire TF masks with narrowband DOA
estimates is to use the estimates to derive a Gaussian mix-
ture model from which posterior probabilities that serve as
the masks can subsequently be extracted [20]. The proposed
approach, however, incorporates only the broadband DOAs.
For comparability, we therefore instead exploit that various
classical DOA estimation methods, such as narrowband real-
izations of SRP-PHAT [21], and IPU-LS [22], are based on the
maximization of a function J (µ,λ,ϕ) over all angles ϕ. By
evaluating this function only at the broadband DOAs ϕj , a TF
mask for source separation is straightforwardly given by

Msep
j (µ, λ) =

J (µ,λ,ϕj)∑
j′ J (µ,λ,ϕj′ )

. (4)

However simple, our experiments indicate that this approach
is relatively robust, which makes it suitable for assessing the
benefit of using deep learning in DOA based source separa-
tion based on the comparison with the proposed approach.
To account for diffuse noise, we combine (4) with a post-
filter [23] Mnoi

j (µ,λ) that is applied independently to each
initial source estimate Msep

j (µ,λ)·Y1(µ,λ). Empirically, we
set lower bounds −40dB for Msep

j (µ,λ), and −12dB for
Mnoi

j (µ,λ) to reduce musical noise. The required power spec-
tral density matrices are estimated by recursive averaging with
time constant 40ms. For conciseness, we simply refer to the
combinationMsep

j ·Mnoi
j as the SRP-PHAT or IPU-LS mask.

C. Results
Fig. 4 shows numerical results for two different SNRs:

30dB (first row), and 0dB (second row). For all metrics, based
on 25 independently generated sets of microphone signals,
the average improvement (∆) compared to the unprocessed
reference microphone signal is presented. Specifically, we con-
sider the segmental source-to-distortion ratio (SDR), source-to-
interferences ratio (SIR), and SNR [24], as well as STOI [25],
and wideband PESQ [26] on a MOS-LQO scale.

To better understand the results, it is instructive to take a
closer look at one particular example, as depicted in Fig. 5.
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Fig. 5: TF masks for the second ( ) source (9-mic array, SNR=0dB). Out
of the two baselines, only the best performing one (IPU-LS) is displayed.

Only in this case, we assumed the availability of the true
DOAs. Despite being undesirably coarse, the comparison with
the oracle SSMM indicates that TF regions of high de-
sired signal energy are identified correctly by FB-MEst. As
Fig. 4 shows, this may lead to a relatively good perfor-
mance of FB-MEst ( ) in terms of the considered metrics (for
SNR=0dB: about ∆SDR=9dB with both arrays). However,
Fig. 5 demonstrates that the SB-MEst mask captures the details
significantly better: the harmonic structure of the target signal
can clearly be recognized in the mask. This also becomes
apparent upon listening to the resulting audio files1: although
FB-MEst attains a better overall suppression of interference
and noise, the signal is not enhanced locally, e. g., between
harmonics. The lack of suppression in regions with a strong
presence of the desired signal gives the auditory impression
of a considerable target speech distortion. Consequently, Fig. 4
shows a better ∆PESQ for SB-MEst (0.14 for the 9-mic array)
than for FB-MEst (0.08) at SNR=30dB. In the presence of
strong noise (SNR.0dB), however, we find that the given
conditions are too adverse for PESQ to be a reliable measure.

Despite capturing the fine structure of the speech well, by
neglecting cross-band information SB-MEst cannot suppress
unwanted components satisfactorily. As Fig. 5 indicates, along
with the audio files, Mix-MEst inherits the advantages of both
FB-MEst and SB-MEst. The perceived speech distortion is
clearly reduced compared to FB-MEst, but remains noticeable.
In terms of the numerical results in Fig. 4, the improvement of
Mix-MEst ( ) compared to FB-MEst and SB-MEst is evident
(e. g., for SNR=0dB with the 3-mic array: ∆STOI=0.17
with Mix-MEst, 0.12 or less with the other approaches).

In the last two rows of Fig. 4, we compare Mix-MEst with
the baselines introduced in Sec. IV-B. It appears that IPU-

1https://users.ugent.be/∼abohlend/EUSIPCO2021/
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LS is better suited for the direct mask computation than SRP-
PHAT. Upon closer examination, we find that this is due to the
sharper peaks produced by the IPU-LS cost function. There-
fore, we will focus on this baseline method in the following.
Considering speaker separation only, IPU-LS performs favor-
ably (∆SIR=11dB with the 9-mic array for SNR=30dB).
The audio example, in which the sources come relatively close
(∆ϕ= 20°) in the final seconds, shows that Mix-MEst, in
contrast to the IPU-LS mask, then no longer suppresses the
interfering speaker very well. The impression of a distorted tar-
get signal can also be avoided because, like SB-MEst, the IPU-
LS based method only enhances the signal locally as cross-
band dependencies are not exploited. The noise suppression,
however, which is addressed solely by the postfilter, is inferior
to Mix-MEst. This is reflected in the audio example, where
musical noise is present in the IPU-LS output, and the instru-
mental metrics in Fig. 4 (for the 9-mic array at noisy condi-
tions: ∆SNR=9dB with Mix-MEst, only 4dB with IPU-LS).

V. CONCLUSIONS

We proposed a deep learning approach for mask based
source separation, where signal components are distinguished
based on the DOAs. Three related CNN architectures were
considered: FB-MEst mixes information from all frequencies,
whereas SB-MEst processes each subband independently. To
fully exploit the information contained in each individual TF
bin without neglecting cross-band dependencies, Mix-MEst
combines both. The evaluation based on speech signals showed
that masks produced by Mix-MEst capture the coarse as well
as the fine structure of the ideal mask fairly well. However,
there is only a limited suppression in TF regions where the
target signal is dominant, which can give the impression of
the speech being distorted. Therefore, under certain conditions,
SB-MEst may still be preferred despite the metrics indicating
an inferior performance. Finally, comparing Mix-MEst with
two baseline approaches based on classical narrowband DOA
estimation demonstrates that incorporating deep learning is
beneficial particularly in adverse conditions, but reveals that
the separation of closely spaced sources can still be improved.

To better capture target speech while exploiting cross-band
information, the further improvement of the local suppression
could be studied in future work. Moreover, whereas it was
observed that powerful TF masks can be derived from spatial
information with just 3 microphones, the performance was
only slightly better for the 9-microphone array. To benefit more
from additional microphones, the integration of the masks into
an adaptive beamforming framework may be considered.
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