
Speech Enhancement Quality Assessment Based on
Aspect-Specific Qualities: A Preliminary Analysis

1st Benjamin Stahl
Institute of Electronic Music and Acoustics

University of Music and Performing Arts
Graz, Austria
stahl@iem.at

2nd Alois Sontacchi
Institute of Electronic Music and Acoustics

University of Music and Performing Arts
Graz, Austria

sontacchi@iem.at

Abstract—We propose a methodical framework to develop
computational tools for assessing the quality of enhanced speech
signals. The central building block of this framework are aspect-
specific subjective quality ratings obtained in a listening experi-
ment. We show that mean aspect-specific subjective quality ratings
predict overall quality significantly better than objective features
of state-of-the-art quality assessment tools. These experimentally
obtained aspect-specific subjective quality features can be utilized
to determine and tune objective features that predict them and
thus indirectly predict overall quality.

Index Terms—speech quality, speech enhancement, computa-
tional quality assessment

I. INTRODUCTION

Defined listening test procedures and computational models
for subjectively and objectively assessing the perceived quality
of speech enhancement algorithms have first been necessitated
by the standardization of speech transmission systems [1], [2].
More recently, quality prediction has gained attention, when
campaigns for the evaluation of source separation algorithms
were introduced [3], [4].

Some quality prediction approaches compute quality as
a single similarity/distance between time-frequency (TF)
representations of a test stimulus and a reference stimu-
lus. The frequency-weighted segmental signal-to-noise ratio
(fwsegSNR) [5, ch. 11] combines perceptual and information-
theoretical principles by computing the short-time SNR in
frequency bands that are proportional to the ear’s critical bands,
and by computing a weighted average of these values. Another
approach, PEMO-Q [6], computes the similarity metric PSMt

between biomimetic TF representations of the reference and the
test stimulus and maps it onto overall quality using a piecewise
rational function. Similarly, the speech variant of ViSQOL [7],
[8] computes a Neurogram Similarity Index Measure (NSIM)
motivated by the Structural Similarity Index (SSIM), which is
used in image quality assessment. The NSIM measure is then
mapped onto overall quality using a polynomial function.

Other computational assessment methods model quality as
a function of multiple features. The Perceptual Evaluation of
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Speech Quality (PESQ) [2] computes an aggregated absolute
difference D between time- and gain-aligned TF loudness
representations of the reference and the test stimulus. Addition-
ally, it computes the asymmetric difference Dasym that only
takes into account TF components in which the power density
of the test stimulus is clearly greater than the power density
of the reference stimulus. Such components more likely lead
to separate auditory objects and thus are perceived as more
disturbing. The overall quality predicted by PESQ is a sigmoid-
like mapping of a linear combination of D and Dasym. The
Perceptual Evaluation of Audio Source Separation (PEASS) [4],
[9] employs a more sophisticated approach. Based on the true
audio source signals (target source and interference sources), it
decomposes the difference between reference and test stimulus
into three components: target distortion, interference, and
artifacts. It then computes the perceptual similarities PEMO-Q
PSMt between different less corrupted versions of the test
stimulus (by removing different corruption components) and
the test stimulus. These values are then mapped onto overall
quality and onto three aspect-specific qualities using simple
neural networks. The audio variant of ViSQOL [8] uses per-
frequency-band NSIMs and maps them onto overall quality
using a Support Vector Regression. The Perceptual Evaluation
of Audio Quality (PEAQ) [10] computes 11 psycho-acoustically
motivated features, called model output variables (MOVs),
and maps them onto overall quality using a neural network.
Kastner’s 2f-model [11] uses only two of these MOVs, which
are mapped onto overall quality by a rational function.

Subjective audio quality can be described as “the perceptual
distance between a set of [namable] sound-character features
and a set of reference features” [12], [13, ch. 3]. Here, we refer
to the distances between individual (sets of) sound-character
features as aspect-specific qualities. Examples for such aspect-
specific qualities are disturbance by background sounds and
preservation of the target signal, which could be divided
into sub-aspects such as equality of timbre or equality of
amount of reverberation. The computational quality assessment
methods discussed here compute overall quality as a direct
function of objective features, i.e., D and Dasym with PESQ
or the per-frequency-band NSIMs with ViSQOL. While some
methods’ objective features aim to capture individual subjective
aspect-specific qualities, the objective features are typically not
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individually tuned to map on these aspect-specific qualities in
a one-to-one way. Subjective aspect-specific ratings are most
often not available. Instead, objective features are usually tuned
according to the developers’ domain knowledge and judgment
and then mapped onto subjective overall quality.

In this publication, we propose an alternative methodical
framework for the computational assessment of speech enhance-
ment quality. Figure 1 shows a schematic representation of this
framework. Specifically tuned objective features are used to
model subjective aspect-specific qualities (obtained in listening
experiments), which in turn are used to model overall quality.
Such a framework — with namable subjective aspect-specific
qualities — closely reproduces the formation of an overall
quality concept in human perception [13, ch. 3]. Therefore,
using formally collected subjective aspect-specific ratings to
select and tune objective features and modeling the two stages
of quality formation shown in Fig. 1 is a promising approach
to computational assessment of overall perceived quality.

The proposed framework is novel insofar as that with
PEASS, aspect-specific quality ratings (target preservation,
presence of other sources, presence of artificial noise) were
indeed collected in addition to overall quality ratings in a
listening experiment, but overall quality predictions are not
computed from predictions on these aspect-specific qualities,
but rather directly from the same objective features that are
used to predict aspect-specific qualities. The aspect-specific
qualities proposed with PEASS are a possible set of aspect-
specific qualities to be used within the proposed framework.
A different set of aspect-specific qualities is proposed by
the ITU recommendation for subjective quality assessment
of speech enhancement [1]. It proposes a listening experiment
in which participants first rate a stimulus’ target preservation,
then the disturbance of background sounds, and finally the
overall quality by subjectively weighting the two aspects.

This publication should be considered a preliminary verifi-
cation of the feasibility of the proposed framework. Only if
experimentally obtained aspect-specific quality ratings predict
overall quality clearly better than the objective features of state-
of-the-art computational quality assessment methods, such a
framework can lead to an improvement in computational quality
assessment. Thus, we formulate the following research question:
Do subjective aspect-specific quality ratings predict overall
quality better than the best state-of-the-art objective features?

II. METHODS

A. Collection of subjective ratings

We collected subjective ratings of aspect-specific qualities
and overall quality of enhanced speech stimuli in an experiment.
Twenty-six participants, aged 20 to 58, took part in the
experiment. All participants work or study in the field of audio.
The web-based listening experiment software webMUSHRA
[14] was used. Participants used full-size headphones.

Stimuli were created from different noisy speech mixtures
and speech enhancement algorithms. The stimuli and subjective
ratings used in [4] are publicly available. This dataset includes
20 real source separation output stimuli from five different
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Fig. 1. Exemplary model in the proposed framework.

mixtures in which speech is the target signal. However, more
datapoints are required for the multiple local regression that we
applied to determine the overall quality prediction strength of
different feature sets. Therefore, we added 11 more mixtures,
each also processed with four speech enhancement algorithms,
containing different interference signals and target speech
signals. Six of these mixtures were created using semi-anechoic
source signals and a room impulse response simulation with
two virtual microphones and moving speakers. The speaker
signals in these mixtures were taken from the EBU SQAM
material [15], the interference source signals were typical
office sounds. The other five mixtures were simulated mixtures
from the CHiME3 [16] challenge. Each of these mixture
signals was processed with four speech enhancement methods.
The employed speech enhancement algorithms include both
traditional and neural network mask based beamforming and
postfilter approaches [17]–[19]. In total, 16 mixtures (= 64
stimuli) were thus available for rating. With each mixture, the
clean target speech signal is considered the reference stimulus.
All stimuli have a duration of 5 s, are sampled at fs = 16 kHz,
and are loudness-matched following [20]. An anchor stimulus
was created for each mixture by adding a mix of all interference
signals and an artifacts signal to a corrupted version of the
target signal. This stimulus combines the signal degradations
of the different anchor stimuli used in [4].

Fifteen mixtures were divided into three mixture groups, each
containing five mixtures. The 26 participants were distributed
across the mixture groups, so that each participant only rated
five mixtures. The remaining mixture was used as a training
mixture. Each participant successively performed the following
tasks on the assigned stimuli: Rate the . . .
• . . . test sounds with respect to the overall quality.
• . . . quality of the test sounds with respect to the target

preservation. For this purpose, only focus on the target
(i.e., the sound associated with the reference) in the test
sounds and disregard all other sounds.

• . . . quality of the test sounds with respect to the absence of
additional ARTIFICIAL sounds.

• . . . quality of the test sounds with respect to the absence of
other NATURAL sound sources.

• . . . quality of the test sounds with respect to the disturbance
of background sounds (ALL artificial and natural sounds,
except for the sound associated with the reference).

The overall quality rating was always performed first, while
the other four tasks were performed in randomized order. This
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guarantees that the aspect-specific tasks do not influence the
participants’ criteria for overall quality and that no bias emerges
from the order of rating tasks.

The Multi-Stimulus with Hidden Reference and Anchor
(MUSHRA) [21] method was used for the rating. For each of
the tasks described above, the participants first did a training
page with the training mixture and then five test pages, where
on each page they jointly rated the four enhanced signals,
a hidden reference signal, and an anchor signal associated
with one mixture. The order of pages/mixtures as well as the
arrangement of stimuli on each page was randomized. The
function of the hidden reference and anchor signals is to spread
the quality range on each MUSHRA page and decrease context
effects in this way, so ratings from different MUSHRA pages
stay comparable. The ratings of these signals, however, were
only used to assess the soundness of ratings. The data of one
participant had to be removed, since the participant consistently
did not rate the hidden reference with the maximum score.

The obtained ratings of overall quality, target preservation,
presence of artificial sounds, presence of other natural sources,
and overall disturbance of background sounds are denoted by
yp,m,s, atargetp,m,s , aartifp,m,s, a

other
p,m,s, and abackgp,m,s . The subscripts p, m,

and s respectively denote the participant, the mixture scenario,
and the stimulus in each mixture (output signal of one of four
speech enhancement algorithms).

B. Computation of objective features

We computed the objective features and quality predictions
of all computational quality assessments described in Section I
using Loizou’s MATLAB scripts [5], PEASS v2.0.1 [9] (and
implicitly the low-pass version of PEMO-Q [6]), ViSQOL v3
[8], the PQEvalAudio implementation of PEAQ [22], and the
formulae given in [6] and [23].

C. Determining prediction strength of feature sets

1) Cross-validation procedure: By averaging the partici-
pants’ overall ratings over a subset P⊆ of participants, the mean
overall quality rating ȳP⊆,m,s can be obtained for each stimulus
(m, s). Note that due to the between-participants division of
mixtures, mean overall ratings can only be obtained from those
participants in P⊆ that rated the respective stimuli. Let xξP⊆,m,s
be a vector of features, which can be across-participant mean
ratings on different aspect-specific qualities obtained from the
rating tasks described in Section II-A or different objective
features obtained from the algorithms named in Section II-B.
The superscript ξ denotes the choice of feature set. Note
that objective features are independent of the subscript P⊆,
but included in this definition for unification. The regression
model f (x,h, c) with model hyperparameters h and model
coefficients c is applied to map the features xξP⊆,m,s onto
an estimate of the mean overall quality rating. The optimal
(with respect to some loss function) coefficients of a model
fitted to features and overall quality ratings from the subset of
participants P⊆ on the subset of mixtures M⊆ are denoted
by cP⊆,M⊆ . To ascertain the prediction strength of models
with different feature vectors and hyperparameters with unseen

data, we propose the following cross-validation procedure: Let
P\e and M\e be the subsets of participants and mixtures,
that each exclude one participant or one mixture. The model
f
(
x,h, cP\e,M\e

)
fitted to the mean ratings of participants in

P\e on the stimuli in M\e is then used to predict the mean
overall ratings ȳP,me,s on the stimuli of the excluded mixture
me from all participants rating that mixture using xξP,me,s,
the mean aspect-specific ratings / objective features associated
with the stimuli in me:

ˆ̄yP,me,sP\e (ξ,h) = f
(
xξP,me,s,h, cP\e,M\e

)
. (1)

The mean squared error is then computed as

MSEP\e,me(ξ,h)=
1

#S
∑
s∈S

(
ˆ̄yP,me,sP\e(ξ,h)− ȳP,me,s

)2
,

(2)
where # denotes the number of elements in a set. The expected
value of MSEP\e,me (ξ,h) is the expected squared error when
predicting the mean rating of an unknown stimulus with a
limited sample of ratings on other stimuli. Leaving out one
participant when fitting the model accounts for the uncertainty
of mean subjective ratings. The cross-validation is repeated for
all possible combinations of excluded participants and mixtures.
Since MSEP\e,me (ξ,h) cannot be considered independent
across subsets P\e within the mixture me, the mixture means
MSEme (ξ,h) must be considered for comparative inference
on feature sets and hyperparameters.

2) Regression models: As a realization of f (x,h, c), we
used k-nearest neighbor locally weighted regression [24]. The
first hyperparameter, r, defines the fraction of datapoints used
for the local regression, such that k = br · Dc, where D is
the number of total datapoints and k is the number of used
datapoints. A Gaussian weighting w is defined as

w(x,x0) = exp

(
− d2(x,x0)

d2(xk+1,x0) · 2s2

)
, (3)

where x0 is the point at which f (x,h, c) is evaluated, d(x,x0)
is the Euclidean distance between x and x0, and xk+1 is
the (k+1)-th nearest point to x0. The parameter s is a scale
factor, the second hyperparameter we define for our regression
model. As a third hyperparameter, we use the polynomial
degree p of the local regression. The function f (x,h, c) at x0

is defined as weighted degree-p polynomial regression with
the k nearest neighbor datapoints xn, n ∈ {1, . . . , k}, using
w (xn,x0) as weights. Thus, the found regression coefficients
are location-dependent. Note that the regression models include
standardization of the regressors. The hyperparameters control
the following trade-offs:
• For small r and large p, the model tends to overfit; for

large r and small p, it tends to underfit.
• For small s, more weight is given to closer datapoints,

leading to less discontinuities at regions at which the set of
k nearest neighbors change; for large s, the k datapoints
are given more equal weights.

At r = 1 and s =∞, the regression is a global regression.
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3) Evaluated feature sets: We considered the following
(vectors of) objective features as realizations of the feature
vector xξP⊆,m,s (note that we omit the subscripts P⊆, m, and
s for readability, when referring to features):
• fwsegSNR
• NSIM
• [DPESQ, DPESQ

asym] and the two features it is comprised of
• the PEASS feature vector [PSMt,PSMtarget

t ,PSMinterf
t ,

PSMartif
t ] and the 14 vectors resulting from combining

subsets of its elements (including single features)
• [AvgModDiff1,ADB] and its two single features
• the full set of ViSQOL-audio features
• the full set of PEAQ features
As can be seen, selecting features by fitting models on subsets
of feature sets was not done with the features of ViSQOL-audio
and PEAQ. Due to the large number of possible combinations,
this was computationally not feasible. Next to the objective
features, we considered the following (vectors of) aspect-
specific subjective ratings:
• subjective superset 1 (associated with PEASS):

[ātarget, āartif , āother] and the six vectors resulting from
combining subsets of its elements

• subjective superset 2 (associated with ITU-T P.835):
[ātarget, ābackg] and the single feature ābackg

To find the optimal hyperparameters for each feature vector,
we varied r from 0.1 to 1 in steps of 0.1 and s from 10−0.5 to
100.5 in 10 logarithmically spaced steps. We appended s =∞
to the evaluated values of s. We fitted weighted mean, linear,
and quadratic regression models (p ∈ {0, 1, 2}). In order to also
evaluate the fitted mappings of the discussed objective quality
assessment methods themselves, we additionally considered
the overall quality estimates of these methods as realizations of
xξP⊆,m,s. However, we only used global linear regression mod-
els (r = 1, s =∞, p = 1) with these overall quality estimates,
since they are already the output of nonlinear mappings and
should be proportional to mean subjective quality. The hyper-
parameters associated with the lowest mean MSEme (ξ,h) are
denoted by hoptξ . The cross-validation mean squared errors
MSEme(ξ,hoptξ) reflect the prediction strength of the feature
set ξ. From here on, we omit the hyperparameters hoptξ for
readability: MSEme(ξ) := MSEme(ξ,hoptξ).

4) Comparisons between feature sets: We computed the
mean of MSEme (ξ) for each feature set ξ. To visualize
confidence in the central tendencies of the distributions, we
also computed the median and its binomial-distribution-based
95% confidence interval. The distribution of MSEme (ξ) is
non-Gaussian. Therefore, we carried out pairwise comparisons
of different feature sets ξ using Wilcoxon signed-rank tests
[25]. To test our main hypothesis, we selected the respective
aspect-specific subjective feature sets associated with the lowest
mean of MSEme out of the two supersets of aspect-specific
subjective features enumerated in Section II-C3. Furthermore,
we selected the objective feature set associated with the lowest
mean of MSEme . To compare each of the two best subjective
aspect-specific feature sets to the best objective feature sets,

we then carried out two one-sided Wilcoxon signed-rank tests
using the respective MSEme values (N = 15 mixtures). We
set the global significance level to α = 0.05 and jointly tested
the two hypotheses in a Bonferroni-Holm procedure [26].

Our stimuli, listening experiment configuration, subjective
results, and MATLAB analysis scripts are available online1.

III. RESULT

Figure 2 visualizes MSEme (ξ) associated with objective
feature sets (black), objective quality predictions (violet),
and feature sets of across-participant mean aspect-specific
quality ratings (dark yellow). Note that some objective
features are shown multiple times, since they are used in
multiple objective quality assessment methods. We identi-
fied [ātarget, āother] as the best feature set out of subjective
superset 1, [ātarget, ābackg] as the best feature set out of
subjective superset 2, and [PSMt,PSMinterf

t ,PSMartif
t ] as

the best objective feature set. We compared the MSEme
values associated with [ātarget, āother] to those associated
with [PSMt,PSMinterf

t ,PSMartif
t ] in a one-sided Wilcoxon

signed-rank test [25] and obtained p1 = 0.0177. Compar-
ing the MSEme values associated with [ātarget, ābackg] and
[PSMt,PSMinterf

t ,PSMartif
t ] yielded p2 = 0.0240. Both dif-

ferences are significant at their respective Bonferroni-Holm-
corrected [26] significance levels (α1 = 0.025, α2 = 0.05).

IV. DISCUSSION

We found that the respective best subjective feature sets out
of the supersets associated with PEASS and ITU-T P.835 both
predict overall quality significantly better than the best objective
feature set found. Interestingly, out of the subjective superset as-
sociated with PEASS, [ātarget, āother] predicted overall quality
better than the complete feature set [ātarget, āartif , āother]. This
suggests that āartif is not a useful feature, possibly because
subjects 1) disagree strongly on which sounds qualify as
“artificial noise” and/or 2) disagree strongly on how to weight
this aspect into overall quality.

We obtained lower cross-validation mean squared errors with
fitted mappings of the objective quality assessment methods’
raw objective features compared to a linear regression of their
quality predictions, except for PESQ.

V. CONCLUSION AND OUTLOOK

The result confirms our research hypothesis: The feature
set comprising the aspect-specific quality ratings on “target
preservation” and ”overall disturbance of background sounds’
predicts overall quality significantly better than the best set
of objective features obtained from state-of-the-art objective
quality assessment tools. The same applies for the set of aspect-
specific quality ratings on “target preservation” and “absence
of other natural sound sources”.

We presume that each subjective aspect-specific feature can
be predicted better than subjective overall quality by objective
features, since it represents a concept on a lower abstraction
level. We will investigate this by engineering objective features

1https://git.iem.at/stahl/subj-aspects-quality-assessment-preliminary/
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Fig. 2. Means and medians of mixture mean squared errors MSEme for different feature sets. Means are shown as crosses; medians and 95% confidence
intervals are shown as bars. The feature sets with the lowest mean squared errors are highlighted.

using the collected rating data. If this presumption proves true, a
new computational quality assessment method that outperforms
current approaches can be designed in this way.
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B. Edler, and J. Herre, “webMUSHRA — a comprehensive framework
for web-based listening tests,” Journal of Open Research Software, vol. 6,
no. 1, 2018.

[15] European Broadcasting Union. Sound quality assessment material
recordings for subjective tests. Accessed: 2020-06-14. [Online]. Available:
https://tech.ebu.ch/publications/sqamcd.

[16] J. Barker, R. Marxer, E. Vincent, and S. Watanabe, “The third chime
speech separation and recognition challenge: Dataset, task and base-
lines,” in 2015 IEEE Workshop on Automatic Speech Recognition and
Understanding (ASRU), 2015, pp. 504–511.

[17] X. Anguera, C. Wooters, and J. Hernando, “Acoustic beamforming for
speaker diarization of meetings,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 15, no. 7, pp. 2011–2022, 2007.

[18] R. Zelinski, “A microphone array with adaptive post-filtering for noise
reduction in reverberant rooms,” in ICASSP-88., International Conference
on Acoustics, Speech, and Signal Processing, 1988, pp. 2578–2581 vol.5.

[19] J. Heymann, L. Drude, and R. Haeb-Umbach, “Neural network based
spectral mask estimation for acoustic beamforming,” in 2016 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2016, pp. 196–200.

[20] E. Zwicker, H. Fastl, U. Widmann, K. Kurakata, S. Kuwano, and
S. Namba, “Program for calculating loudness according to DIN 45631
(ISO 532B),” Journal of the Acoustical Society of Japan, vol. 12(1), pp.
39–42, 1991.

[21] Method for the subjective assessment of intermediate quality levels of
coding systems. ITU-R Recommendation BS.1534-3, 2015.

[22] P. Kabal, “An examination and interpretation of ITU-R BS. 1387:
Perceptual evaluation of audio quality,” TSP Lab Technical Report, Dept.
Electrical & Computer Engineering, McGill University, Tech. Rep., 2002.

[23] AudioLabs Erlangen. (2020) AudioLabs - Subjective Evaluation of
Blind Audio Source Separation Database: SEBASS-DB. Accessed: 2020-
08-16. [Online]. Available: https://audiolabs-erlangen.de/resources/2019-
WASPAA-SEBASS.

[24] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally weighted learning,”
Artificial Intelligence Review, vol. 11, pp. 11–73, 1997.

[25] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
Bulletin, vol. 1, no. 6, pp. 80–83, 1945.

[26] S. Holm, “A simple sequentially rejective multiple test procedure,”
Scandinavian Journal of Statistics, vol. 6, no. 2, pp. 65–70, 1979.
[Online]. Available: http://www.jstor.org/stable/4615733

355


