
Predominant Jazz Instrument Recognition:
Empirical Studies on Neural Network Architectures

Jakob Abeßer
Semantic Music Technologies

Fraunhofer IDMT
Ilmenau, Germany

jakob.abesser@idmt.fraunhofer.de

Jaydeep Chauhan
Semantic Music Technologies

Fraunhofer IDMT
Ilmenau, Germany

Prateek Pradeep Pillai
Semantic Music Technologies

Fraunhofer IDMT
Ilmenau, Germany

Michael Taenzer
Semantic Music Technologies

Fraunhofer IDMT
Ilmenau, Germany

Stylianos I. Mimilakis
Semantic Music Technologies

Fraunhofer IDMT
Ilmenau, Germany

Abstract—Musicological studies on jazz performance analysis
commonly require a manual selection and transcription of
improvised solo parts, both of which can be time-consuming.
In order to expand these studies to larger corpora of jazz
recordings, algorithms for automatic content analysis can ac-
celerate these processes. In this study, we aim to detect the
presence of predominant music instruments in jazz ensemble
recordings. This information can guide a structural analysis in
order to detect improvised solo parts. As the main contribution,
we perform a comparative study on predominant automatic
instrument recognition (AIR) in jazz ensembles using a taxonomy
of 11 common instruments including singing voice. We compare
the performance of three state-of-the-art convolutional neural
networks (CNNs) including a recurrent variant and one with an
attention mechanism. Our main finding is that while all networks
perform comparably, the attention-based model learns the most
compact feature representation as it is by orders of magnitude
smaller than the other models.

Index Terms—automatic instrument recognition, convolutional
neural networks, deep learning, attention, jazz analysis

I. INTRODUCTION

Automatic Instrument Recognition (AIR) is one of the
central tasks in Music Information Retrieval (MIR). By iden-
tifying the active instruments in a music recording, AIR can
further guide algorithms for source separation [1] or music
transcription [2]. An automated analysis of music recordings
can support and facilitate large-scale musicological research
such as in music performance analysis.

Algorithms for AIR face several challenges such as the
spectral overlap between simultaneously played instruments
as well as the large variety of instrument sounds caused by
different sound production mechanisms. When analyzing jazz
recordings, two specific challenges exist. As a first challenge,
the recording quality of early jazz recordings from the begin-
ning of the 20th century is poorer than in contemporary record-
ings. This directly affects the data distribution of derived audio
features, which are processed by classification algorithms such
as deep neural networks. In the research field of sound event
detection (SED), this phenomenon is known as covariate shift

and its compensation is subject to current research [3]. A
second challenge arises from the inherent hierarchy of instru-
ments [4] in jazz ensemble recordings. While predominant
solo instruments such as trumpet or saxophone are audible
in the foreground, rhythm section instruments such as piano,
double bass, and drums often remain in the background. In this
paper, we focus on predominant instrument recognition in jazz
recordings and extend the instrument taxonomy previously
investigated by Gomez et al. [5] from six to eleven instruments.

As the main contributions of this paper, we evaluate three
variants of convolutional and convolutional recurrent neural
networks previously used for AIR and sound event detection
(SED) for the purpose of instrument recognition in jazz
ensemble recordings. We conduct systematic experiments to
determine the influence of different data splitting strategies
between training and test sets as well as threshold techniques
to obtain the final predictions. This paper is structured as
follows: We first review recent deep-learning based AIR
algorithms in Section II. Section III provides details about
the data processing pipeline and the evaluated neural network
architectures. Section IV discusses the applied datasets before
Section V explains the experimental procedure and summa-
rizes the results. Finally, Section VI concludes this work.

II. RELATED WORK

Traditional AIR algorithms included audio pre-processing,
feature extraction, classification and post-processing of pre-
diction results [6]. Such algorithms combined domain expert
knowledge with signal processing and machine learning tech-
niques. In contrast, recent AIR algorithms focus on signal
representations, which are learnt in a data-driven fashion from
large datasets using deep neural networks.

The first CNN-based AIR algorithms were introduced by
Park & Lee [7] and Li et al. [8]. The former model uses both
magnitude and phase information as input, whereas the latter
processes raw audio in an end-to-end learning fashion. A CNN
architecture for predominant instrument recognition, which
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includes multiple pairs of convolutional layers without inter-
mediate max pooling as inspired by the VGGNet architecture,
was proposed by Han et al. [9]. This model was further used by
Gomez et al. [5] for solo instrument recognition in jazz ensem-
ble recordings. The authors investigated harmonic/percussive
and solo/accompaniment source separation as pre-processing
prior to the instrument recognition stage. Taenzer et al. also
built upon this model and systematically investigated the
influence of data augmentation and normalization strategies
for the use-case of instrument family recognition in classical
recordings [10].

A current research trend is to approach AIR jointly with
additional classification tasks in a multitask learning fashion.
Yu et al. grouped instruments based on similar onset character-
istics or instrument family membership to jointly predict the
instrument as well as its corresponding group [11]. Hung &
Yang approached AIR in classical ensemble recordings using
a CNN model that jointly learns to predict the activity of
instruments and pitches [12]. Another trend is to investigate
alternative signal representations for AIR such as the Hilbert
Spectral Analysis (HSA) [13] and the Hilbert-Huang Trans-
form [14].

III. METHODOLOGY

Our AIR approach consists of two steps. In the first step,
music signals are pre-processed and converted into a two-
dimensional signal representation as described in Section
III-A. This representation is then processed by a deep neural
network (compare Section III-B), which computes predictions
concerning the activity of different predominant jazz instru-
ments. Finally, the predicted instrument activities are post-
processed as discussed in Section III-C.

A. Audio Representation & Pre-processing

We resample every audio file at 22.05 kHz and normalize
the yielded signal to a maximum absolute amplitude of 1.
We then compute a 128-band mel-spectrogram1 of each audio
signal using a window and a hop size of 2048 and 512 samples,
respectively. Following [9], we apply logarithmic magnitude
scaling to each computed mel-spectrogram and split it into one
second long sub-sequences, i. e., patches of 43 (time) frames.
Based on the findings presented in [10], every patch is further
standardized using the global mean and standard deviation.

B. Neural Network Architectures

Our study considers three neural network architectures
based on convolutional neural networks (CNN). We compare a
regular CNN architecture (CNN) [9] and one with an attention
mechanism [16] (CNN-A), which were both previously used
for AIR. As a third architecture, we investigate a convolutional
recurrent neural network (CRNN) originally proposed for sound
event detection [17]. The model architectures are illustrated in
Figure 1 and are detailed below. Despite their architectural

1Mel-spectrograms are computed using the librosa library [15].
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Fig. 1. Comparison of three model architectures CNN, CRNN, and CNN-A
(from top to bottom). Abbreviations used: Convolutional layer (Conv), Max
pooling layer (MaxPool), ReLU (R), Dropout (D), Flatten (F), Fully-connected
layer (FC), Sigmoid (S), Normalization (N), Bi-directional Gated Recurrent
Unit (BD GRU), Time-distributed (TD).

differences, all models share a final fully-connected feed-
forward (dense) layer that uses the sigmoid activation function
to predict (weak) instrument activity labels on a song-level.

1) CNN [9]: The original CNN model by Han et al. [9]
includes 4 pairs of convolutional layers with symmetric 3x3
filters. The intermediate max pooling operations of size 3x3
implement a feature abstraction across time and frequency. At
the same time, the number of filters increases from 32 to 256.
Finally, after a global max pooling layer, two dense layers are
used to compute the final class predictions.

2) CRNN [17]: In the CRNN model proposed by Adavanne
& Virtanen [17], the front-end includes three convolutional
layers and intermediate max pooling operations, which op-
erate solely across frequency to retain the initial temporal
resolution. In the back-end, the output of two bi-directional
gated recurrent unit layers are first processed by three time-
distributed dense layers before the temporal context is flattened
and two additional dense layers generate the final predictions.
The second network output branch for generating strong label
predictions is neglected here.

3) CNN-A [16]: The third model CNN-A [16] combines
a CNN architecture with an attention mechanism. The model
front-end consists of three convolutional layers with 128 1x1
filters, ReLU activation functions, and an intermediate dropout
of 0.6. This way, the original spectrogram is transformed
into an 128-dimensional embedding space while maintaining
the original time-frequency resolution. In the back-end of
the network, both the instance-level scores and attention-level
weights are computed in two parallel branches before they are
combined. The main intuition of this attention mechanism is
to enable a weighted aggregation of frame-level predictions
based on the internal embedding vectors. The resulting tag-
level predictions allow for a training using weakly-labeled
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Model Number of Parameters

CNN 1, 449, 963
CRNN 522, 502
CNN-A 52, 769

TABLE I
NUMBER OF PARAMETERS FOR EACH CNN ARCHITECTURE.

datasets.
It must be noted that in the original study [16], the authors

used blocks of 10 VGGish embedding [18] frames as input
to the attention-based CNN, which correspond to a temporal
context of 9.6 seconds of audio. As discussed in Section III-A,
the spectrogram patches used in our experiments only cover a
temporal context of around one second of audio.

C. Post-processing

We use the “S2” evaluation strategy used by Han et al. [9]
for late fusion from frame-level to recording-level predictions
p ∈ RN (0 ≤ pi ≤ 1) with N denoting the number of
instrument classes. For this purpose, frame-level predictions
are averaged over the duration of each audio recording and
then normalized by their maximum value. We use a threshold τ
to obtain recording-level binary instrument activity predictions
a ∈ ZN as

ai =

{
0 pi < τi

1 else.
(1)

We consider two approaches to derive the threshold τ : In the
fixed threshold approach, we use τ = 0.5 for all classes. In
the variable threshold approach, we determine the optimal
threshold for each class to maximize the F-score of this class
on the validation set.

IV. DATASETS & TAXONOMY

A. Source Datasets

In this section, we will briefly review four existing AIR
datasets, from which we compiled our task-specific datasets.

1) IRMAS: The Instrument Recognition in Music Audio
Signals (IRMAS) dataset was created with a focus on pre-
dominant instrument recognition [19]. We used data from
both the original training set (single-labeled) and test sets
(multi-labeled). The dataset includes music recordings from
various decades across the past century which naturally differ
in recording quality. Here, we use recordings of the instrument
classes clarinet, flute, trumpet, and vocals.

2) MedleyDB: MedleyDB 2.0 is a dataset of royalty-free
multitrack music recordings [20]. The dataset covers a wide
distribution of genres and primarily consists of full-length
songs with professional or near-professional audio quality.
All recordings are multi-labeled. We use recordings of the
instrument classes clarinet, tenor saxophone, flute, trumpet,
vibraphone, trombone, and vocals.

Strategy Datasets
IRMAS MedleyDB WJD/JSD DTL

DS1 Training (80 %) - Validation (20 %) Test

DS2 Training (100 %) Training (70 %) -
Validation (30 %)

Test

TABLE II
DATASET SPLIT STRATEGIES AS DISCUSSED IN SECTION IV.

3) WJD/JSD: The Weimar Jazz Dataset (WJD) was pub-
lished by the Jazzomat Research Projekt [21] and includes
manual solo melody transcriptions of 456 jazz solos in com-
mercial jazz recordings of various epochs. In a follow-up work,
Balke et al. [22] compiled the Jazz Structure Dataset, which
includes structural annotations (chorus boundaries) as well as
chorus-level instrument activity annotations.

4) DTL: As a second dataset of solo sections from jazz
ensemble recordings, we use a subset of 607 files from the
“The DTL1000 Jazz Solo Dataset”. This dataset was provided
to us by the Dig That Lick research project2 and includes
recordings from all relevant epochs of jazz history. In our
experiments, we used a subset of the DTL audio recordings
database with annotations of the predominant solo instruments.
Both the WJD/JSD and DTL datasets include all instrument
classes considered in this work (compare Sec. IV-B).

B. Instrument Taxonomy & Data Distribution

In [23], Gomez et al. investigated AIR in jazz recordings
for the six instruments trumpet (tp), clarinet (cl), trombone
(tb), alto saxophone (as), tenor saxophone (ts), and soprano
saxophone (ss). In this paper, we extend this selection to
eleven instruments by adding the instrument classes baritone
saxophone (bs), flute (flu), vibraphone (vib), cornet (cor), and
(male and female) singing voice (voi). Compared to other
instruments, the singing voice is used less often as a solo
instrument, but still plays an important role in jazz.

The total duration of annotated audio recordings per dataset
and instrument class is summarized in Fig. 2. One can observe
that the data distribution is heavily imbalanced. For instance,
only four of the eleven instrument classes (cla, flu, tp, voi)
can be found in all four datasets while the four classes ss,
as, bs, and cor are only included in the WJD/JSD and DTL
datasets. Furthermore, the total duration of available data
varies strongly across different instruments, with fewer data
for the instruments ss, bs, and cor and significantly more data
for the instruments ts, tp, and voi. To a certain extent, this
correlates to their common frequency of appearance as solo
instruments in jazz recordings.

V. EVALUATION

A. Data Split Strategies

As shown in Tab. II, we compare two strategies on splitting
the four datasets into training, validation, and test sets. The
DTL dataset is consistently used solely as test set to compare

2http://dig-that-lick.eecs.qmul.ac.uk/
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Fig. 2. Overall duration (min) of annotated audio recordings per dataset and
per instrument class. The instrument class abbreviations are introduced in
Section IV-B.

both strategies. For strategy DS1, we randomly shuffle the
IRMAS, MedleyDB, and the WJD/JSD datasets and use 80%
as training data and the remaining 20% as validation data.
In contrast, for strategy DS2, we derive a validation set from
30% of the WJD dataset and use the remaining 70% as well
as the full IRMAS and MedleyDB datasets as training data.
The intuition behind strategy DS2 is to use a validation set
that resembles the musical content of the test set (DTL), i. e.,
ensemble recordings from all jazz epochs and covering all
instruments considered in this work.

B. Experimental Procedure

1) Neural Network Training: We use the Adam opti-
mizer [24] to train all neural networks. An initial learning rate
of 10−4 is halved every five epochs. We use early stopping
if no improvement on the validation loss is observed for 20
epochs. The total number of epochs is set to 400. Binary
crossentropy is used as loss function since all datasets are
multi-labeled. For each experimental configuration, one model
training is performed.

2) Threshold Optimization: We compare two thresholding
strategies. As a first strategy, we use a fixed threshold of
τc = 0.5 for all classes. As a second strategy, we optimize the
decision thresholds for each class c based on the validation
set. We select τc by maximizing the F-score of class c on the
validation set using a grid search between τ ∈ [0, 1] with a
step-size of 0.001.

C. Metrics

We compute both the micro-averaged F-score Fmicro, which
averages performance over all test items, and the macro-
averaged F-score Fmacro, which averages over class-wise F-
scores due to the class imbalance discussed in Section IV.

D. Results

Table III summarizes the evaluation metrics, from which
we make the following observations. First, the class im-

Data Split
Strategy

Model Fixed Threshold Variable Threshold

Fmicro Fmacro Fmicro Fmacro

DS1 CNN 0.80 0.50 0.73 0.49
CNN-A 0.80 0.48 0.73 0.49
CRNN 0.80 0.50 0.72 0.51

DS2 CNN 0.81 0.52 0.60 0.46
CNN-A 0.77 0.47 0.65 0.46
CRNN 0.81 0.47 0.64 0.46

TABLE III
SUMMARY OF F-SCORE RESULTS FOR BOTH DATA SPLIT STRATEGIES AND

BOTH TYPES OF DECISION THRESHOLDS.

balance discussed in Section IV-B is confirmed, since the
Fmicro scores are on average 0.2-0.3 larger than the Fmacro
scores. As a second observation, the best performance of
Fmicro = 0.81 and Fmacro = 0.52 was achieved for the fixed
decision threshold and the data split strategy DS2 using the
CNN model. However, the lead is very small compared to the
other models using the fixed decision threshold. Therefore,
it must be stated that all three neural network architectures
perform comparably well for the given AIR scenario. These
results show that the CNN-A is most effective in learning
suitable features for this AIR task, as it is by two orders
of magnitudes smaller than the best-performing CNN model
(compare Table I).

As a third observation, using a fixed decision threshold
consistently outperformed variable (class-dependent) decision
thresholds. For the variable threshold case, data split strategy
DS1 clearly outperforms DS2. Since the class-wise decision
thresholds are optimized on the validation sets, this indi-
cates that using the WJD/JSD dataset as a “representative”
validation set for the jazz ensemble recordings in the DTL
test set (DS2) is not the better strategy here. As a final
observation, Table IV shows that the recognition performance
varies strongly between different instrument classes. For many
instrument classes such as as, bs, flu, and vib, the F-scores
using the fixed threshold are significantly bigger than for
the variable thresholds. To our surprise, the performance of
the frequently appearing classes ts and tp is clearly lower
compared to the other instruments with Fmicro values of around
0.5.

VI. CONCLUSION

In this paper, we report on a comparative study of three
convolutional neural network architectures for the task of pre-
dominant instrument recognition in jazz ensemble recordings.
Based on short one-second long excepts of mel-spectrograms,
the networks were evaluated for predicting the instruments’
activity. In our experiments, we furthermore investigate two
dataset split strategies differing in the composition of the
validation set and two thresholding approaches to binarize the
network predictions. While our results show that all models
perform comparatively well, the smallest convolutional neu-
ral network variant, which includes an attention mechanism,
learns the most efficient feature representation for the given
task. Furthermore, we find that a fixed decision threshold
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Instrument Class Fixed Threshold Variable Threshold
Fmicro Fmacro Fmicro Fmacro

Clarinet (cla) 0.83 0.59 0.80 0.61
Soprano Saxophone (ss) 0.95 0.49 0.73 0.46
Alto Saxophone (as) 0.71 0.56 0.38 0.37
Tenor Saxophone (ts) 0.53 0.43 0.56 0.50
Baritone Saxophone (bs) 0.96 0.49 0.35 0.29
Flute (flu) 0.93 0.50 0.29 0.25
Trumpet (tp) 0.48 0.47 0.50 0.50
Vibraphone (vib) 0.94 0.49 0.76 0.53
Trombone (tb) 0.80 0.60 0.70 0.58
Cornet (cor) 0.94 0.49 0.90 0.50
Singing Voice (voi) 0.81 0.58 0.61 0.44

TABLE IV
INSTRUMENT-LEVEL F-SCORE RESULTS FOR THE BEST PERFORMING

CONFIGURATION OF THE CNN MODEL USING DATASET SPLIT STRATEGY
DS2.

is preferable over variable decision thresholds, which are
individually optimized for each instrument class. Future work
must further investigate why particular instrument classes
such as trumpet and tenor saxophone achieve lower recog-
nition scores, although they appear more frequently in jazz
recordings. Furthermore, a detailed ablation study and model
inspection analysis potentially allows for a more detailed
model comparison for the given task.
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[23] J. S. Gómez, J. Abeßer, and Estefanı́a Cano, “Jazz Solo Instrument
Classification with Convolutional Neural Networks, Source Separation,
and Transfer Learning,” in Proceedings of the 19th International Society
for Music Information Retrieval Conference, Paris, France, 2018, pp.
577–584.

[24] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

365


