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I. ABSTRACT

Fundamental frequency estimation has many applications
in speech and music processing. Among other methods, peak
tracking in the cepstrum domain has been established as a
robust and successful method for speech signals. Its elegance
stems from the fact that a harmonic pattern in the log-spectral
domain is mapped onto a single bin in the cepstral domain.
However, the cepstrum method had not been thoroughly ana-
lyzed in the context of music signals. In this work we introduce
a novel method for detecting and compensating octave errors
to enhance the fundamental frequency search in the cepstrum
and combine it with a fine search based on a least squares
approximation in the time domain. The performance of the
method is evaluated with monophonic music signals across
a wide range of fundamental frequencies. In addition, the
achievable frequency resolution and estimation error and their
dependence on general signal parameters are analyzed.

II. INTRODUCTION

The fundamental frequency (F0) is an often used quantity
in speech and music processing, e.g., for the analysis and
synthesis of prosody in speech or melody in music signals.
Thus, a variety of F0 estimation algorithms for speech and
music signals have been developed over the years. They
are based e.g. on the autocorrelation function [1]–[3], on
Summation of Residual Harmonics (SRH) [4], [5], or on the
harmonic model [6]–[8]. An overview of different methods
can be found, e.g., in [5] and [9]. With the advancement
of deep learning, also neural network-based approaches have
been proposed (e.g. [10]).

Another class of algorithms employs the cepstrum [11], [12]
which transforms the log-magnitude spectrum into the cepstral
domain via an inverse DFT or DCT. The cepstrum method was
initially developed and tested for narrowband speech signals
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[13]. Its appeal resides in the elegant mapping of harmonic
spectral patterns onto a few cepstral bins and in the fact that
relative estimation errors do not vary much on the Cent (¢)
scale. Thus, by searching for maxima in the cepstral domain
the fundamental frequency may be identified with moderate
computational effort. It has been used for instance for vibrato
analysis and synthesis in [14], however only for singing voices.

Frequently, the estimation of F0 is organized in two con-
secutive steps: firstly, a relatively coarse search yields F0

candidates which are then further refined in a local search
step (e.g., [15]). This first step can be implemented by any
of the well-known methods mentioned above. In the second
step, either a fine-spaced grid search using the least squares
method [15], an interpolation using a quadratic function, or a
dynamic model using an HMM [3] or a Kalman filter [8] are
used to improve the resolution and tracking capabilities.

For signals with small sampling rates and relatively low
fundamental frequencies (e.g. speech signals) F0 can be esti-
mated with a high accuracy using the cepstral approach. It is,
however, less clear how the cepstrum method would perform
on music signals which requires the consideration of a much
wider range of fundamental frequencies. Since the cepstrum
method maps harmonic patterns onto single bins it enables a
fast search across a wide range of fundamental frequencies.

The remainder of this paper is organized as follows: In Sec-
tion III we present the cepstrum-based method for fundamental
frequency estimation. We then investigate the resolution prop-
erties of the cepstrum method in Section IV. In Section V we
describe our experimental setup to evaluate the method and
summarize the results in Section VI.

III. METHOD

In the proposed method, we integrate a heuristic octave
error compensation into the cepstrum-based F0 estimation
and combine it with a subsequent least squares estimator of
a harmonic model in the time domain. Figure 1 shows a
flowchart of the proposed method.
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Figure 1: Flowchart of the cepstrum-based method

A. Cepstrum

The core idea of F0 estimation in the cepstral domain [13]
is to reliably find the cepstral peak q̂0 that represents the
fundamental frequency F0 and is located at quefrency (q) bin

q0 =
1/F0

1/fs
=
fs
F0
. (1)

The discrete-time input signal x(n), n ∈ N0, is first divided
into Λ overlapping frames x(λ) = {x(λR + 1), ..., x(λR +
L)} of length L with frame index λ ∈ {0, . . . , Λ − 1}
and frame shift R < L. Applying the Fourier transform
X(λ) = F

{
x(λ)

}
to each frame λ yields the short-time

Fourier transform (STFT). The real cepstrum is obtained by
applying the inverse Fourier transform to the log-spectrogram
and removing the symmetric part (q > qmax = L/2 + 1)
[11]. However, inspired by [12], we slightly deviate from the
standard cepstrum definition and employ a modified version
S
(λ)
mod of the log-spectrogram to obtain a meaningful and robust

cepstral representation C(λ):

S
(λ)
mod = 20 log10(1 + |X(λ)|) (2)

C(λ) = F−1{S(λ)
mod} =

[
C(λ)(1), . . . , C(λ)(qmax)

]
(3)

In (2), the use of 1 + |X(λ)| instead of |X(λ)| prevents small
values of |X(λ)| turning into large negative values while the
general shape of the logarithmic spectra is maintained.

Prior to peak search in the cepstrum, a number of additional
preprocessing steps are applied: First, we employ local non-
recursive smoothing with a range of two quefrency bins in each
frame. Also, only cepstral peaks beyond a threshold q0,min can
be reasonably interpreted as a fundamental frequency as the
first cepstral bins (q < q0,min) carry mostly information on
signal energy and timbre. Therefore, we attenuate the lowest
q-bins by applying a high-pass soft-mask function

C
(λ)
HP(q) = C(λ)(q) ·

(
q

q + qHP

)
, q ∈ {1; qmax} (4)

to the cepstrum. The cepstral peak search range is further
restricted following the rationale that a salient peak in the
cepstrum can be expected to be preceded by at least one
local minimum qmin. The index q̂(λ) of the global cepstral
maximum serves as a preliminary candidate for q̂0:

q̂(λ) = argmax
q∈{qmin;qmax}

C(λ)(q). (5)

Figure 2: Octave error compensation using the regression
approach. Top row: the cepstra C(q) with their most salient
peaks qp(i) (�) and the minimum peak height Cmin (dashed
line). Mid row: the regression of the peak locations qp(i).
Bottom row: error εreg and threshold cthr (red line). In (a) the
cepstral maximum q̂ (©) coincides with the leftmost cepstral
peak (4). In (b) q̂0 = qp(1) is chosen as the peaks qp(i)
(�) are on a regular grid of subharmonics of q̂ so they all lie
close to the regression line qreg(i). In (c) the peaks (�) do
not lie on a regular grid of multiples, thus εreg > cthr and no
compensation is applied.

However, due to the periodic structure of harmonic signals, this
maximum might as well be located within the neighborhood
of one of the first I integer multiples q̂ = i ·q0, i ∈ N≤I of q0.
This leads to so-called sub-octave errors as the corresponding
frequency estimates F̂ = fs/q̂ = fs/(i · q0) = F0/i relate to
the subharmonic series of the actual fundamental frequency
F0 (cf. Figure 5).

B. Octave error compensation

To probe the cepstrum for possible sub-octave errors, the Np

most salient peak locations [qp(1), . . . , qp(Np)] are collected.
This search is constrained by a minimal distance of εq and
a minimum peak height Cmin = C(λ)(q̂)/2 within a range
limited by q′max = 2q̂ + εq . The locations qp(i), i ∈ N≤I are
approximated as integer multiples of the median peak distance
d̃p and used as supports for a linear regression with slope areg
and intercept qint:

qp(i) ≈ i · d̃p (6)

qreg(i) = areg · i+ qint. (7)

If the peak locations qp(i) are located close to a linear grid of
(sub)-harmonics of q̂, they are well approximated by qreg(i)
so the relative regression errors decrease (cp. Figure 2).

In the case of a regular grid and a well-fitting regression the
location qp(1) of the leftmost salient cepstral peak refers to the
smallest rahmonic period of the particular frame. It is chosen
as candidate q̂0(λ) if the root mean square approximation error

εreg =

√
1

I

∑I

i

(
1− qreg(i)/qp(i)

)2
(8)

is below the heuristically determined threshold cthr = 0.05.
We denominate this heuristics as harmComp. It proved to

be rather robust with regard to different cepstral shapes. A
narrow median filter with a width of 3 frames smoothens the
estimated track F̂0(λ) = fs/q̂0(λ) and reduces single outliers.
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Figure 3: Relation between quefrency and frequency for dif-
ferent sampling rates fs and frame lengths up to L = 4096.

C. Time-domain based refinement

To improve the F0 estimation accuracy beyond the grid of
integer quefrency bins q we propose a least squares (LS) har-
monic approximation [16] within a defined range of frequency
candidates in the vicinity of the preliminary F0 estimate
F̂0(λ) = fs/q̂0(λ). For each signal frame λ the time domain
signal x(λ) is approximated by a sinusoidal model with ak,
Ωk = 2πfk/fs and ψk denoting the amplitudes, normalized
frequencies and phases for each of its K components.

h(n) = a0 +
∑K

k=1
ak cos (Ωkn+ ψk) (9)

Searching for the fundamental frequency F0 of x(λ), one
can assume that the components of h(n) are harmonic (k ∈
N≤K), thus Ωk = kΩ0 = k(2πF0/fs). With eq. (9), the best
harmonic approximation y(λ)(Ω0) in the sense of the least
squares method can then be found as described in [15]. For
each signal frame λ it minimizes the error function

εLS(λ,Ω0) = ‖x(λ) − y(λ)(Ω0)‖22. (10)

The refined fundamental frequency F̃0 is found by picking
the frequency candidate with the minimum error εLS(λ,Ω0).
As the amplitude and phase components ak and ψk of the har-
monic model are not required for the fundamental frequency
estimation task, their computation can be omitted.

In our default approach the refinement step is performed
twice: first with a coarse spacing of ∆F0,c = 10Cent within
the search range of F̂0 ± 50Cent and afterwards with a finer
spacing of ∆F0,f = 2Cent within the range of F̂0±10Cent.

IV. ANALYSIS OF F0 RESOLUTION

Frequency analysis in the cepstral domain benefits from the
fact that a uniform cepstral grid results in a high resolution
for low frequencies and a relatively sparse representation
for higher frequencies. As the resolution in the frequency
domain depends on the sampling rate fs (cf. (1)), the relation
between frequency and quefrency is shown in Figure 3 for
seven different sampling frequencies. Interestingly, (1) does
not depend directly on the DFT length L. In fact, the DFT
length determines the lower bound of fundamental frequencies
F0,min = 2fs/L that can be extracted. Note that this boundary
coincides with the spectral resolution of the DFT when a rect-
angular analysis window is used. For other window functions
F0,min will be larger.

In order to further quantify the resolution we investigate
the relative fundamental frequency estimation error ∆F0 =
F̂0 −F0 in relation to the error ∆q0 = q̂0 − q0 in the cepstral
domain and find

∆F0

F0
=
fs
F0

(
q̂0 − q0
q̂0q0

)
=

∆q0F0

fs +∆q0F0
. (11)

Assuming that peak picking results in errors in the cepstral
domain in the order of one q-bin (∆q0 ≤ 1) we find
∆F0

F0
≤ F0

fs+F0
. With a sampling rate of fs = 44.1 kHz and

fundamental frequencies between F0,min = 50Hz (≈̂G1) and
F0,max = 5kHz (≈̂ D#8) the deviation is in the range of
5Cent to 94Cent and thus smaller than one semitone. This
error can be further reduced by the subsequent time-domain
based refinement step described in Section III-C.

V. EXPERIMENTAL EVALUATION

In a first step we systematically investigated the influence
of different instruments and pitches1 on the fundamental
frequency estimation by applying the proposed method to the
McGill University Master Samples (MUMS) library [17]. This
dataset contains up to 6000 sound samples of a wide range of
(pitched) musical instruments playing single notes across their
respective tonal range, so an analysis both across different
instruments at fixed pitch and across the particular tone range
of each instrument is possible.

However, as the MUMS database exhibits a certain number
of errors like tuning error, octave errors, and erratic labeling
[18], it is less suited to evaluate the overall performance of
a fundamental frequency estimation algorithm. Therefore, in
the second step of evaluation we applied our method to the
MDB-melody-synth database [19]. It contains 65 songs taken
from the MedleyDB database [20] where the melody tracks
have been resynthesized using a sinusoidal analysis/synthesis
framework [21]. Similar to signals synthesized from MIDI data
this dataset provides perfect fundamental frequency annota-
tions while timbre and dynamics of the synthesized tracks are
very close to the original recordings.

The Gross Pitch Error (GPE), Fine Pitch Error (FPE),
Voicing Decision Error (VDE) and F0 Frame Error (FFE) error
metrics [9], [22] have been used as evaluation criteria:

GPE

100%
=
NGPE

NVV
(12)

FPE

Cent
=

√√√√Var

(
1200 log2

(
F̂0(λ)

F0(λ)

))
, λ ∈ ΛV,GPE (13)

VDE

100%
=
NVU +NUV

Ntotal
(14)

FFE

100%
=
NVU +NUV +NGPE

Ntotal
=

NVV

Ntotal
GPE+VDE

100%
(15)

1Simplified, the pitch denotes the human percept of fundamental frequen-
cies. In a musical context, it assigns musical tones to relative positions on a
musical scale. Throughout this paper, the term pitch is used where fundamental
frequency is assessed from a musical point of view.
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Figure 4: Gross Pitch Error (GPE) with method Ceps6 for
several instruments from the MUMS database

The set of frames detected as voiced but with a Gross Pitch
Error is defined as ΛV,GPE = {λ :

∣∣∣1200 log2 ( F̂0(λ)
F0(λ)

)∣∣∣ >
∆FGPE} whereas ΛV,GPE denotes the set of frames within
the GPE tolerance ∆FGPE. NGPE = |ΛV,GPE| denotes the
number of GPE frames, NVU and NUV indicate the numbers
of true voiced frames detected as unvoiced and vice versa, and
Ntotal denotes the total number of evaluated frames.

VI. RESULTS

To assess the impact of the particular refinement steps, we
denote the following methods (cf. Figure 1): Ceps1 comprises
only the cepstral peak search, in Ceps2 the harmComp heuris-
tics (cf. Section III-B) is added and in Ceps3 a subsequent
median filter with a width of 3 frames is applied to prevent
single outliers. Subsequently, the coarse and fine LS searches
described in Section III-C are considered in Ceps4 and Ceps5,
followed by another median filter in method Ceps6.

Although the MUMS dataset is not perfect for an instrumen-
tal evaluation of F0 estimation performance (see Section V),
the GPE results for method Ceps6 depicted in Figure 4 show
that the proposed enhanced cepstral method performs reliably
for a wide range of instruments and frequencies. Notably, only
for the extreme ends of the practically used F0 range and for
idiophone instruments like tubular bells (bells), glockenspiel
(gks), marimba (mar) and xylophone (xylo) a poorer funda-
mental frequency estimation performance is obtained. This can
be attributed to the inharmonic distribution of partial tones
in these instruments. The performance in the low frequency
range can be further improved by increasing the transformation
length L at the cost of computational effort (cf. Section IV).

Table I shows the error metrics yielded for the MDB-
melody-synth database. For better comparison with other
methods we applied two different GPE tolerances of
∆FGPE = 50Cent (corresponding to one semitone) and
∆FGPE = 100Cent as in e.g. [3], [9]. As a benchmark we
refer to the well-established methods PYIN [3] (obtained with
the Vamp plugin for Sonic Annotator [23]) and CREPE [10].

Figure 5: Distribution of Raw Pitch Errors (RPE) for all voiced
frames from the MDB-melody-synth database.

GPE [%] FPE [¢] VDE [%] FFE [%]
50 ¢ 100 ¢ 50 ¢ 100 ¢ 50 ¢ 100 ¢ 50 ¢ 100 ¢

Ceps1 31.55 31.09 7.69 9.50 2.01 2.01 17.92 17.69
Ceps2 2.03 1.16 9.95 11.55 2.01 2.01 3.03 2.59
Ceps3 1.98 1.02 10.26 12.01 1.02 1.02 2.02 1.53
Ceps4 1.91 1.04 9.29 11.14 1.02 1.02 1.98 1.54
Ceps5 2.05 1.06 8.72 10.96 1.02 1.02 2.05 1.55
Ceps6 1.98 1.05 8.50 10.71 0.03 0.03 1.02 0.56
PYIN 6.22 5.33 6.78 9.57 0.96 0.96 4.09 3.64
CREPE 1.45 0.76 7.38 9.30 3.15 3.15 3.88 3.54

Table I: Pitch Error Scores for MDB-melody-synth database
with GPE tolerances ∆FGPE of 50Cent and 100Cent.

The Raw Pitch Error (RPE) describes the deviation of more
than one semitone from the true F0. As depicted in Figure 5,
sub-octave errors (F̂0 < F0) account for almost 30% of all
false F0 estimations across the MDB-melody-synth dataset
if only the maximum cepstral peak is considered (Ceps1).
Raw Pitch Errors caused by higher harmonics (F̂0 > F0)
could not be observed throughout the complete dataset. Thus,
Figure 5 and the results in Table I illustrate that the harmComp
heuristics introduced in method Ceps2 (cf. Section III-B)
significantly improves the estimation performance such that
the PYIN method is outperformed in terms of GPE and VDE
on this dataset. As the additional refinement steps in methods
Ceps3 to Ceps6 further reduce the FPE and VDE measures,
we propose method Ceps6, although method Ceps3 exhibits a
slightly better GPE.

The proposed method has been implemented and evaluated
using MATLAB v9.5 (R2018b) on a standard PC with Intel
Core i7-4790 CPU. For the most elaborate and computation-
ally demanding method Ceps6 an average real-time ratio of
rRT = Tcomp/TV = 0.33 was measured with L = 2048
and R = 512 on the MDB-melody-synth dataset sampled at
fs = 44.1 kHz. Tcomp and TV denote the overall computation
time and the total duration of all voiced frames in the database.

VII. CONCLUSIONS

In this paper we presented a fundamental frequency esti-
mation method for music signals that combines a search for
plausible F0 candidates in the cepstral domain supplemented
by a regression-based heuristics to avoid (sub-)octave errors
and a subsequent fine search based on a least squares approx-
imation of a harmonic time domain model.

A preceding analysis of the F0 resolution (cf. Section IV)
demonstrated that the expected F0 estimation error for simple
peak-picking in the cepstrum depends on the fundamental
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frequency but is below 100Cent and thus smaller than one
semitone. Especially for high-pitched instruments we therefore
advise to also use the resolution refinement described in Sec-
tion III-C. Then, the resolution and computational complexity
demands can be well balanced for a wide range of notes.

An experimental evaluation showed that with the proposed
cepstrum-based fundamental frequency estimation method an
F0 accuracy comparable to other established methods can
be obtained. It also proved to be robust to a wide range of
different instrumental sounds and pitches and shows a low
computational complexity.
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