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Abstract—Identifying performers from polyphonic music is a
challenging task in music information retrieval. As a ubiquitous
expressive element in violin music, vibrato contains important
information about the performers’ interpretation. This paper
proposes to use vibrato features for identifying violinists from
commercial orchestral recordings. We present and compare
two systems, which take the same note-level melodies as input
while using different vibrato feature extractors and classification
schemes. One system calculates vibrato features according to
vibrato definition, models the feature distribution using his-
tograms, and classifies performers based on the distribution
similarity. The other system uses the adaptive wavelet scattering
which contains vibrato information and identifies violinists with a
machine learning classifier. We report accuracy improvement of
19.8% and 17.8%, respectively, over a random baseline on piece-
level evaluation. This suggests that vibrato notes in polyphonic
music are useful for master violinist identification.

Index Terms—Music signal processing, vibrato feature, violin-
ist identification, statistical modelling, wavelet scattering

I. INTRODUCTION

Musical structures established by composers and their inter-
pretation by performers are two key factors that impact music
performance [21]. Modelling master performers’ individual
playing styles based on several musical factors such as dynam-
ics, timbre and vibrato [6] is important for music education,
music expression analysis and music synthesis. To verify if the
selected musical factors or models work effectively to repre-
sent a performer’s characteristic style, performer identification
becomes an important topic in music signal analysis.

The music informatics literature is rich in works focusing
on musical expression analysis and performer identification.
Stamatatos and Widmer proposed a set of features like time
deviation and melody lead [4] that capture aspects of pianists’
individual style. Ramirez et al. [15] developed a machine
learning approach to identify Jazz saxophonists by analyzing
the pitch, timing, amplitude and timbre of individual notes.
Similarly, Bresin [3] used articulation features to analyse
different pianists’ expressions. Particularly, there are prior
works on violin expression analysis and violinist classification.
Li et al. [8] selected duration, dynamics and vibrato features to
classify expressions using Support Vector Machines (SVMs).
Molina et al. [11] proposed an approach for identifying vio-
linists in monophonic recordings using a musical trend-based
model. Shih et al. [19] used articulation and energy features
to compare different playing styles of Heifetz and Oistrakh.

Among the influential factors of music performance, vibrato
plays an important role in the performance of singing voice,
flute and bowed-string instruments, and is frequently used to
enhance selected notes and make them more prominent [12].

Although there is no clear definition of vibrato, it can be
broadly described as the musical voice’s “periodic oscillation
in pitch” [18]. In violin performance, the characteristics of
vibrato mostly depend on the performer’s finger movement on
the fingerboard, which is strongly related to the performer’s
playing habits. Moreover, vibratos are ubiquitous in violin
music, while vibrato features including vibrato rate and extent
are seldom influenced by the differences between musical
instruments and recording conditions. Thus we choose vibrato
features as a characteristic factor to identify different master
violinists.

To our knowledge, most previous works attempted violinist
identification using features of pitch, timing, energy or vibrato
amount in a music piece, while characteristic vibrato features
were not considered in this task. Additionally, prior vibrato
analysis studies [5], [13], [14], [23] extracted vibrato features
from fundamental frequency trajectories of notes in mono-
phonic music segments. In this paper, we propose two ap-
proaches that can potentially identify performers in polyphonic
music using: i) vibrato feature distribution similarity (VF-DS),
and ii) adaptive wavelet scattering (AWS). The former contains
a high-level feature extractor and uses feature distributions to
model performers’ individual vibrato playing. The latter, also
known as the adaptive time–frequency scattering, is a variant
of the scattering transform [10]. It was originally proposed
in [22] for representing periodic modulations, including vi-
bratos, in monophonic music. For the polyphonic scenario, we
modify the AWS and apply it for the first time to performer
identification.

A flowchart of the study is shown in Figure 1. We first con-
struct a dataset from performances of nine master violinists,
then extract the predominant melody using the MELODIA
algorithm [17]. Two kinds of vibrato features are extracted
and performer identification results are obtained using two
proposed methods shown by the alternative paths in the
diagram. Finally the results are compared.
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Fig. 1. Flow chart of the proposed systems.
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II. DATASET

In this paper, we use 5 concerto recordings. A concerto is a
musical work that focuses on a solo instrument accompanied
by an orchestra. The violinist’s personal style is clearly shown
while playing a concerto. Compared to solo music (like
unaccompanied sonata), orchestral music pieces are more com-
monly listened to. Every violinist brings an individual style to
the performance leading to variations in tempo, intensity and
vibrato. For example, Heifetz plays the Beethoven D major
violin concerto (III) faster than any other performer which,
perhaps by intent, brings an “unemotional and cold” feeling
to listeners and differentiates his performances.

We select five concertos written by five well-known com-
posers listed in Table I. These pieces have all been performed
by nine violinists: Jascha Heifetz, Anne Sophie Mutter, David
Oistrakh, Itzhak Perlman, Pinchas Zukerman, Isaac Stern, Sal-
vatore Accardo, Yehudi Menuhin and Maxim Vengerov, who
are all leading master violin players. We introduce the dataset
annotation process in [24]. In this study, extending previously
annotated monophonic vibrato notes, we labelled single vi-
brato notes with accompaniment to enlarge the dataset. Details
of the recordings and the amount of annotated data in each
movement are listed in Table I. The total amount of vibrato
annotations for each performer is 248.

TABLE I
CONCERTO VIBRATO NOTE DATASET. WE ANNOTATED THE VIBRATO NOTE
SEGMENTS FROM THE ORIGINAL RECORDINGS, ‘# ANNOTATIONS’ REFERS
TO THE NUMBER OF VIBRATO NOTE ANNOTATIONS IN EACH MOVEMENT.

Composer Concerto Name Movement # annotations

L. V. Beethoven Violin Concerto in D major, Op.61
I 21
II 26
III 4

J. Brahms Violin Concerto in D major, Op.77
I 11
II 6
III 4

F. Mendelssohn Violin Concerto in E minor, Op.64
I 13
II 47
III 3

P. I. Tchaikovsky Violin Concerto in D major, Op.35
I 26
II 7
III 17

J. Sibelius Violin Concerto in D minor, Op.47
I 23
II 24
III 16

III. METHODOLOGY

There are two branches in Figure 1 after the “Melody
Extraction” step which represent two different vibrato feature
extraction methods. These are summarised first while details
of each step are given in the following subsections.

A. Melody Extraction

To capture vibrato features from polyphonic notes, the first
step is obtaining the main melody from the audio signal. We
extract the predominant melody from annotated recordings
using MELODIA [17].

B. Identification using vibrato feature distribution

Vibrato is typically characterised in terms of two factors: the
amount of pitch variation (“vibrato extent”) and the speed with

which the pitch is varied (“vibrato rate”) [20]. To characterise
vibrato, we extract four note-level vibrato features: average
vibrato extent (AE), average vibrato rate (AR), standard
deviation of vibrato extent (SE), and standard deviation of
vibrato rate (SR). All features are computed from the extracted
melody. The specific feature extraction methods are presented
in Section III-B2. In order to describe the characteristic vibrato
from different performers, we use a histogram to model such
features for each performer, which is shown in Sec III-B3.
Finally we compute the feature distributions of each performer,
then a violinist classification method based on distribution
similarity analysis is provided in Section III-B3.

1) Data pre-processing: MELODIA designates segments
without main melody as 0Hz. These are left out from our
analysis. However, the curve exhibits noise and artefacts near
the note peaks and troughs which are not caused by vibrato
as shown in Figure 2(a). The signal is therefore smoothed
to obtain more reliable vibrato features using a zero-phase
Butterworth low-pass filter. This avoids the influence of phase
delay. The smoothed signal is shown in Figure 2(b). In case
some small fluctuations remain around the boundaries, we
address this issue in the following steps.

(a) original (b) filtered

Fig. 2. Vibrato note pitch curve before and after smoothing.

2) Vibrato feature extraction: Vibrato Extent: In every
period of the pitch curve, the instantaneous vibrato extent is
considered to be the distance of vertical components between
an adjacent peak and trough. The average and standard de-
viation of the vibrato extent are calculated from all instant
vibrato extent values within a note. First we find the location
of every peak and trough contained in the pitch curve by
locating maxima and minima in the smoothed melody data
in each period. We then calculate the absolute frequency
distance between successive peaks and troughs to obtain
the instantaneous vibrato extent. The collection of note-level
instant vibrato extents are used to calculate the AE and SE
features for all annotated notes.

Vibrato Rate: After obtaining the locations of every peak
and trough in the pitch curve of a note, the vibrato rate
features can be calculated. We first find the times of peaks
and troughs in the pitch curve. The interval between adjacent
peaks and troughs is considered a half period th, then the
rough instant vibrato rate in every half period is calculated
using V R = 1/(2 ∗ th). The note-level average vibrato rate
(VR) is calculated as the mean value of all instant vibrato
rates within a note. Despite the pitch curve is smoothed before
feature extraction, oscillations or noise that are not caused by
vibrato remains a problem. We consider a heuristic to eliminate
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(b) Mutter

Fig. 3. Distribution of two performers’ average vibrato extent (Cents).

the effect of this. In general, the range of the vibrato rate is
2 Hz to 15 Hz, and the range of vibrato extent is between 9
cents and 50 cents, which is also used in [23]. After extracting
the rough instant vibrato extent and rate at the note-level, we
discard values outside these ranges.

3) Feature Distribution and similarity calculation: We use
histograms to model feature distributions assuming these pro-
vide compact representations of the violinists’ style, which
we can use later for identification. Figure 3 shows the global
distribution of the AE feature for Heifetz and Mutter, while the
x axis means the range of vibrato extent(cents), and the y axis
means the frequency. It can be seen that Heifetz prefers to use
the vibrato in a smaller scale while Mutter’s vibrato extents
are broader. Based on similar observations across different
performers we assume that the feature reflects an important
aspect of the vibrato characteristics.

In order to quantify these differences, we calculate the
similarity of distributions of each feature for all performers
using the Kullback-Leibler (KL) divergence [7], presented as
DKL(P ||Q). This corresponds to the likelihood ratio between
two distributions and tells us how well the probability distri-
bution Q approximates the probability distribution P by com-
puting the cross-entropy minus the entropy. For classification,
the KL divergence is calculated between vibrato feature distri-
butions of an unknown performer and every known performer
in the dataset. Minimum divergence identifies the unknown
performer. Classification experiments using this approach are
presented in the Sec. IV-A.

C. Identification using adaptive wavelet scattering

The dominant band-based AWS in [22] extracts modulation
information by adaptively decomposing the signal around the
frequency band with maximum acoustic energy. Motivated
by the polyphonic nature of violin concertos, we modify the
dominant band-based AWS into the melody-based AWS, where
the latter defines the decomposition trajectory based on the
extracted melody in Section III-A.

1) Theory: Let ψλ(t) denote the wavelet filterbank ob-
tained from a mother wavelet ψ(t), where t ∈ R is the time
variable and λ ∈ R is the log-frequency variable of ψλ(t).
Starting from an audio waveform x(t), we convolve it with
ψλ(t) and take the modulus, and obtain a two-dimensional
representation called scalogram:

X(t, λ) =
∣∣x ∗ψλ∣∣(t). (1)

Averaging X(t, λ) by a lowpass filter φT (t), we obtain the
first-order scattering transform:

S1x(t, λ) =
(∣∣x ∗ψλ∣∣∗φT)(t), (2)

which is invariant to time-shifting and time-warping. T is the
averaging scale. Due to the harmonic nature of violin music,
one harmonic partial sufficiently captures all the characteristic
information of vibratos: rate, extent, and shape. Therefore,
we propose to extract vibrato features corresponding only
to the frequency bands around the extracted melodies rather
than decomposing all frequency bands in the scalogram as
the standard scattering transform [10]. This provides a com-
pact representation and is more computationally efficient. We
denote the centre frequency of each band in the first-order
scattering transform as fλ(t) and the frequency of the extracted
melody as fmelody(t). For each time frame, we first localise
the melody to the frequency band in the scalogram with the
closest frequency value, and obtain the melody trajectory:

λmelody(t) = min
λ

∣∣∣fλ(t)− fmelody(t)
∣∣∣. (3)

Vibratos are frequency modulations, which may spread
over several frequency bands. To capture the vibrato extent
information, we introduce an N -band tolerance symmetrically
centred at the melody trajectory. N is the total number of fre-
quency bands decomposed. The melody-based decomposition
trajectory is then expressed as:

Λ(t) =

{
λmelody(t) + n

∣∣∣ − N − 1

2
≤ n ≤ N − 1

2

}
. (4)

Locating this decomposition trajectory to the scalogram, we
decompose only a subset of the scalogram: XΛ(t, n) =
X
(
t, λmelody(t) + n

)
. Convolving XΛ(t, n) with another

wavelet filterbank ψvt(t), taking the modulus and averaging,
we obtain the melody-based adaptive wavelet scattering:

Sadapt
2 x(t, vt) =

(∣∣XΛ ∗ψvt
∣∣ ∗ φT)(t), (5)

where vt ∈ R is the log-frequency variable of ψvt(t).
To capture only the temporal variation regardless of the

absolute energy of the waveform, we normalise the second-
order scattering coefficients over the first-order coefficients
and take the logarithm of the normalised coefficients [2],
which forms the representation for our performer identification
system. We use Morlet wavelets throughout the paper for
convolutions. This is because Morlet wavelets have an exactly
null average while reaching a quasi-optimal tradeoff in time–
frequency localisation [9].

2) Feature extraction: Starting from the note-level audio
recordings, we extract the characteristic information of vi-
bratos by setting the AWS hyperparameters as follows. Moti-
vated by the vibrato rate of 2-15 Hz in violin music, we set
the averaging scale T = 215 (in samples which corresponds
to 743 ms at a sampling rate of 44.1kHz) to capture the rate
information. The filters per octave in the first-order scattering
Q1 = 16 are applied to ensure a resolution finer than one
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semitone. The extracted melody is then allocated to the nearest
frequency band in the first-order scattering transform. Since
the extracted melody has higher temporal resolution (3 ms)
than that of the scattering transform (186 ms), we use the
median per 186/3 = 62 melody values. We use N = 7
tolerance bands symmetrically centred at the melody trajectory
and filters per octave in the second-order scattering Q2 = 8 ac-
cording to preliminary experimental results. The range M (in
Hz) of the modulation rate is useful for reducing the dimension
of AWS. Setting M into an interval, the AWS extracts only
the coefficients corresponding to this range. An interval larger
than the modulation rate range provides some harmonics in the
modulation representation. We use M = [0, 50], which results
in a feature dimension of 154. The frame size h (in samples)
is inversely log-proportional to an oversampling parameter α,
whereby h = T/2α. This is designed to compensate for the
low temporal resolution resulting from the large T . We use
α = 2 for all the experiments which corresponds to a frame
size of h = 186 ms.

IV. EXPERIMENTS AND RESULTS

A. Classification using vibrato feature distributions
In order to avoid overlaps between the training and test sets,

we use movement-level and concerto-level leave-one-group-
out cross validation in classification. In each fold, we designate
recordings of one concerto played by all 9 performers as
the test set while the remaining recordings are placed into
the training set. This eliminates piece overlap between the
training and test sets. Each concerto in the test set includes 3
movements. Single labels are assigned in the test set at two
levels: concerto-level and movement-level. We then compute
the KL divergence between each feature’s distribution from
the test performer and the same features for every performer
in the training set. Similarity results for vibrato characteristics
based on four features are obtained between the test performer
and every performer in the training set.

Fig. 4. Normalised confusion matrix for violinist identification using vibrato
feature distributions (movement level).

Finally, we compute the mean of normalized KL diver-
gences for four features. We use linear combination with equal

weights to fuse similarity estimates for the distributions of four
different vibrato features. During evaluation, leave one group
out cross validation with five folds are used to calculate the KL
divergence for every group of data. The similarity estimates of
feature distributions in every fold are combined for all features
using the approach shown in Eq. (6):

KLoverall =

|Θ|∑
n=1

wnKLΘn
, (6)

where Θ = {V1, V2, V3, V4} with V1, ..., V4 denoting the sets
of statistical models corresponding to four kinds of vibrato
features (AE,AR,SE,SR) computed separately. These are de-
noted as ‘combination’ features (VC).

From the cross validation, we obtain the similarity of vibrato
features between every two performers in the dataset and
performer identification using one feature or the combination
feature are obtained. Figure 4 shows the identification results
using the VF-DS method and the combination features. Good
performances are achieved in identifying Heifetz, Mutter, and
Stern, with confusion coefficients of 0.53, 0.53 and 0.4, respec-
tively. However, the identification for Perlman and Zukerman
is less reliable. The best performing single feature is the
AE with a macro F-score of 0.278 while the worst is the
SR. We evaluate the result using F-score metrics [16].The
macro precision, recall, and F-score for all performers at the
movement-level are 0.33, 0.32 and 0.31, overall accuracy is
0.32. Corresponding concerto-level result are 0.35, 0.31 and
0.31 with overall accuracy of 0.31.

B. Classification using adaptive wavelet scattering

We develop a violinist identification system using the AWS
features of vibrato notes calculated from Section III-C as input.
SVMs with Gaussian kernels are used as the classifier due
to their good generalisbility based on a limited amount of
training data [1]. The model parameters to be optimised in the
training are the error penalty parameter and the width of the
Gaussian kernel. We use consistent parameter grids of 2{3:1:6}

and 2{−12:1:−7} for these two hyperparameters, respectively.
In the identification process, we conduct both movement-
level and concerto-level leave-one-out cross-validation, as in
Section IV-A. The best model parameters selected in the
training stage are used for testing. Note that the output of
SVMs are the violinist identity for each time frame of the
vibrato notes. Therefore we assign performer labels according
to a majority vote of the frame labels of all vibrato notes in
the movement or concerto. The system outputs one performer
label per each movement or concerto.

We evaluate performer identification using the same metrics
as in Section IV-A. The macro precision, recall and F-score
for all 9 performers obtained at the movement-level are 0.38,
0.24, and 0.23 respectively. The overall accuracy is 0.24,
lower than that obtained by the VF-DS method. Fig. 5 shows
the normalised confusion matrix of the violinist identification
results. Notable confusion is observed between Accardo and
other performers. Few movements of Perlman’s are identified
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Fig. 5. Normalised confusion matrix for violinist identification using AWS-
based vibrato features (movement level).

correctly. The macro precision, recall, and F-score for all 9
performers obtained at the concerto-level are 0.43, 0.29, and
0.27, respectively. The overall accuracy is 0.29.

V. DISCUSSION AND CONCLUSIONS

From the results obtained in Sections IV-A and IV-B, we
find that both the VF-DS method and the AWS method outper-
form a random baseline, with accuracy improvement of 19.8%
and 17.8% respectively on piece-level evaluation. The macro
F-score of the former method is better than that of the latter.
The VF-DS method is based on note-level vibrato extents and
rates, which are high-level and low-dimensional features. Such
features can intuitively model individual finger movements on
the violin fingerboard when vibratos are performed. Moreover,
lower feature dimensionality in VF-DS saves computation cost
at the feature extraction and classification stages compared to
the AWS method.

Disregarding computational expense, the AWS method is
more flexible and promising in three aspects. Firstly, the AWS
method does not depend on the number of notes in the test
data. The performer can be identified using a majority vote
of all frame labels of even a single vibrato note, after the
identification machine learning model is trained. In contrast,
VF-SD requires a sufficient number of vibrato notes to cal-
culate the feature distribution reliably. Additionally, the AWS
method does not require preporocessing the extracted melody
(see Section III-B2), which simplifies the system. Finally, with
the AWS method, we are able to develop a fully automatic
performer identification system. This is because the AWS itself
is a vibrato detector [22]. We can first use the AWS transform
to detect vibratos in the music piece, and then use the AWS
coefficients of the detected vibratos to classify performers.
This framework can also generalise to other playing techniques
like tremolos, trills, which are also frequently used in violin
music and may contain violinists’ discriminative information.

In future work, we may fuse features using different weights
or design features that correlate with timbre or dynamics.
The identification results of both methods depend on melody

extraction accuracy and errors that cannot be corrected in
subsequent steps. Using source separation to isolate the violin
would potentially improve the result. Classifiers including
Decision Trees or Neural Networks may also be tested.
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