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Abstract—This paper addresses the problem of cross-modal
musical piece identification and retrieval: finding the appropriate
recording(s) from a database given a sheet music query, and
vice versa, working directly with audio and scanned sheet music
images. The fundamental approach to this [1] is to learn a cross-
modal embedding space with a suitable similarity structure for
audio and sheet image snippets, using a deep neural network,
and identifying candidate pieces by cross-modal near neighbour
search in this space. However, this method is oblivious of temporal
aspects of music. In this paper, we introduce two strategies that
address this shortcoming. First, we present a strategy that aligns
sequences of embeddings learned from sheet music scans and
audio snippets. A series of experiments on whole piece and
fragment-level retrieval on 24 hours worth of classical piano
recordings demonstrates significant improvement. Second, we
show that the retrieval can be further improved by introducing
an attention mechanism to the embedding learning model that
reduces the effects of tempo variations in music. To conclude,
we assess the scalability of our method and discuss potential
measures to make it suitable for truly large-scale applications.

Index Terms—alignment, piece identification, sheet music,
cross-modal, embedding learning

I. INTRODUCTION

Large amounts of music-related contents are available nowa-
days in the digital realm, in diverse forms, from studio and
live audio recordings to scanned sheet music images and video
clips. Making such heterogeneous collections searchable and
explorable in a content-based way requires efficient techniques
for cross-linking between items of different modalities. In
cross-modality document retrieval, we have a collection of
items of a certain modality (e.g., music recordings) and wish to
retrieve relevant documents from this by querying with items
of a different modality (e.g., scores) – either entire documents
or fragments thereof.

In this paper we address the problem of score-based piece
identification. Our goal is to perform this task in both search
directions, which means finding a score from a collection given
an audio query and, inversely, retrieving an appropriate audio
performance given a sheet music input. We attempt to solve
this problem in its most extreme setup, in the absence of any
metadata or machine-readable information: we work directly
with raw material, that is, audio recordings and digitised
images of scanned sheet music.

The research is supported by the European Union under the EU’s Horizon
2020 research and innovation programme, Marie Skłodowska-Curie grant
agreement No. 765068. The LIT AI Lab is supported by the Federal State of
Upper Austria.

Previous work [2] has shown how to perform audio-sheet
music piece identification with a two-stage procedure, by
retrieving short snippets of music and then generating a ranked
list by counting the number of retrieved snippets per piece.
The audio-to-score correspondences were obtained by learning
a cross-modal embedding space for both audio and score
snippets by means of a deep neural network [1]. Despite
encouraging results, a number of challenges have remained
open. Most importantly, the counting-based strategy entirely
neglects the inherent temporal dependencies between music
snippets, both on the score and audio side. And second, the
network architecture is not designed to account for (possibly
large) tempo variations in music, where varying speed greatly
affects the amount of audio/visual content in fixed-size snip-
pets, making the approach rather brittle.

Our central contribution is a musically more meaningful
identification procedure that exploits the strong temporal re-
lations between consecutive audio and score snippets, aiming
for more robust and accurate identification. The basic idea will
be to compute a matching function by aligning subsequent
snippets of a query and corresponding retrieved items, both
projected onto a learned embedding space, using a dynamic
time warping (DTW) [3] algorithm whose cost is defined over
pairwise distances in this multi-modal embedding space.

A first experiment (Section III-A) evaluates our alignment-
based procedure against the voting approach in [2], revealing a
significant boost in performance, which indicates the positive
impact of introducing an alignment method to this task. This
latter point is further corroborated by an experimental com-
parison to an adapted version of the identification algorithm
used in the popular Shazam system [4], which does not rely
on alignment. To make the snippet retrieval step more robust
to extreme differences in tempo between score and audio ex-
cerpts, we then add a soft-attention mechanism (as described in
[5]) to the baseline architecture (Section III-B), permitting the
network to decide the appropriate temporal context for a given
query snippet. Experimental results show that the compound
effect of addressing the two aforementioned problems amounts
to 280% and 80% improvement over the baseline method for
audio-to-score and score-to-audio retrieval, respectively.

The above experiments aligned entire scores and pieces.
To get an understanding of how our system behaves under
a more realistic usage scenario, we conduct a set of fragment-
level retrieval experiments, systematically varying the lengths
of the queries (Section III-C), giving more insight into the
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Fig. 1: Architecture of cross-modal embedding network [2].

relation between query length and identification accuracy.
Lastly we investigate how our system behaves when increasing
the dataset size (Section III-D), and discuss opportunities to
make it suitable for very large music collections. All the
experiments in this work are conducted with commercial
recordings of several hundred complex classical piano pieces
(24 hours worth of audio), and their respective sheet music
scans.

II. SYSTEM DESCRIPTION

We first explain how to connect audio to sheet music
images by learning an embedding space, then introduce our
identification procedure that aligns snippets of musical content.
The main premise is that the documents of both modalities –
audio recordings and score images – have been cut, in a pre-
processing step, into a set of fixed-size segments (snippets);
these are the items for which we wish to learn a joint embed-
ding space that should place related snippets of both modalities
in close proximity, to permit distance-based retrieval [2].

A. Learning Audio-to-score Relations

To learn a cross-modal score/audio embedding space, we
employ a deep neural network model depicted in Fig.1. It
consists of two convolutional pathways, each responsible for
embedding one of the music modalities. The canonically
correlated (CCA) embedding layer ensures that the outputs of
the two pathways are projected into a shared 32-dimensional
space [1]. The network is trained by optimising a pairwise
ranking loss [6]: the cosine distances between corresponding
snippet pairs are minimised, while distances between non-
corresponding pairs are maximised. This results in match-
ing pairs being projected close to each other and dissimilar
ones falling apart. To train our model, we use the MSMD
dataset [2], which contains over 300,000 score-audio snippet
pairs from synthesised classical piano music.

One advantage of this approach is that pairs of audio and
sheet music snippets are required only during training. At test
time, each pathway can embed their corresponding snippets
independently. Thus, the network can operate in both retrieval
directions: audio-to-score and score-to-audio.

B. Piece Identification via Snippet Voting

The retrieval task now consists in finding a corresponding
audio recording when given a score scan, or the correct score

when given a recording. The basic method for cross-modal
identification works as follows. We outline the steps for the
audio-to-score direction (the audio recording is the query), but
emphasise that the opposite direction works analogously.

Let D be a collection of L images of sheet music pages, and
Q an audio query. Each document Di ∈ D is processed by a
system detector to automatically identify system coordinates
in the score and then cut into a set of image snippets as the one
shown in Fig.1. The snippets are then embedded by passing
them through the score pathway of the trained network,
resulting in a set of sheet music embeddings {yi1, yi2, ..., yiMi

}
for each piece. Analogously, the audio query is segmented into
short spectrogram excerpts, which are embedded via the audio
pathway of the model, resulting in a set of audio embeddings
{x1, x2, ..., xN} for the query.

Given this database of sheet music images and an audio
query embedded to the same shared space, a two-stage strategy
for piece identification was employed in [2] that generates a
ranked list via snippet retrieval. First for each audio snippet
xj of the query, its nearest neighbour from the database of all
embedded image snippets is selected via cosine distance. Each
retrieved snippet then votes for the piece it originated from,
resulting in a ranked list of piece candidates. From now on,
this will be our baseline method.

C. Exploiting Temporal Dependencies

The vote-based procedure completely ignores the temporal
relationships between subsequent snippet queries, which are
key in music. Since both query and database items are now
segmented and projected onto a shared space, a piece (score
and audio recording) can be seen as a sequence of snippet
embeddings, with a distance metric defined in this space,
also between snippets of different modality. Thus, we can
use an alignment procedure to test how well an audio query
(as a sequence of audio snippet embeddings) and a score
(as a sequence of score snippet embeddings) ‘fit’ together,
using the embedding space distance as a cost function. A
similar approach was adopted in [7], where sheet image
scans are converted into chroma features via an optical music
recognition system and aligned to audio recordings.

In the following, we first assume that our query is always
a full piece (recording or score). This will be relaxed later,
in Section III-C. We formalise the matching procedure sim-
ilarly to [8], but replace the Subsequence Dynamic Warping
(SDTW) by its standard DTW algorithm, as we are align-
ing entire sequences. The sequence of embedded snippets
{yi1, yi2, ..., yiMi

} of each piece Di ∈ D from the database1 is
aligned to the query sequence {x1, x2, ..., xN} via DTW, using
the cosine distance as a cost function. The DTW alignment
cost between query Q and piece Di is regarded as the matching

1 For now, we simply go through the entire database of pieces and run a
DTW alignment on all of them. Obviously, one could first obtain a subset
of k top candidates via voting-based retrieval, which would then be further
checked and re-ranked via DTW, but as DTW is so efficient – especially given
the low (snippet-level) resolution of our sequences –, it turned out that our
simple procedure, which does not require near-neighbour search in embedding
space, is basically equally fast.
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(a) Mozart KV 280, 1st movement

(b) Chopin Prelude Op.28 No.22

Fig. 2: Distance matrices (x axis: audio; y axis: score) of two
cases where standard DTW fails: (a) presence of repeats; (b)
when the embedding projections are meaningless.

cost ci = DTW(Q,Di). Finally we generate a ranked list
based on the matching cost of each piece to the query, with
the best matching piece having the lowest alignment cost.

III. EXPERIMENTS

We use a collection of 321 commercial recordings of
classical piano pieces and their corresponding sheet music
scans, which consists of our private music collection plus
scores obtained from the IMSLP online library2 and recordings
retrieved from Youtube3. This amounts to over 24 hours of
recorded music and 1,696 pages of scores, and comprises
complex pieces such as Chopin Ballades and Beethoven and
Mozart piano sonatas. The scores were manually scanned, are
slightly noisy, and the score grid lines (staff lines, bars, etc)
are not perfectly aligned to the scanned document margins,
bringing our retrieval scenario closer to real cases.

Moreover, manual inspections revealed that at least 84 of the
321 pieces (26%) manifest some sort of structural mismatch
between score and audio recording – mainly due to repeats
played in the audio, but not written out in the score.4 This
is rather challenging, as the standard DTW algorithm cannot
handle such structural differences. To illustrate, we show in
Fig.2(a) the distance matrix of a Mozart piece with repeated
sections, which can be seen as the main dark diagonal path
jumps to the beginning of the score.

Embeddings are generated as in Section II-A. All score
pages are first resized to a width of 835 pixels, and 160×200-
pixel snippets are sequentially cut from them with a hop size
of 50 pixels. We replaced the CNN-based system detector
[9] used in [2] with an open source software [10], resulting
in 32% more systems accurately detected. Audio recordings

2https://imslp.org
3https://www.youtube.com/
4We currently do not have a reliable method for identifying and correctly

interpreting repeat signs, da capo / dal segno indications, etc.

Method R@1 R@5 R@10 MRR MR

Baseline [2] 43 (0.13) 93 (0.29) 135 (0.42) 0.23 15
Baseline+Att 93 (0.29) 188 (0.59) 231 (0.72) 0.42 4

DTW 195 (0.61) 257 (0.80) 279 (0.87) 0.69 1
DTW+Att 266 (0.83) 292 (0.91) 303 (0.94) 0.87 1

Shazam [4] 129 (0.40) 173 (0.54) 193 (0.60) 0.47 4
Shazam [4]+Att 154 (0.48) 189 (0.59) 210 (0.65) 0.54 2

(a) Audio-to-score (A2S) piece identification results.

Method R@1 R@5 R@10 MRR MR

Baseline [2] 115 (0.36) 183 (0.57) 209 (0.65) 0.46 4
Baseline+Att 185 (0.58) 242 (0.75) 262 (0.82) 0.66 1

DTW 225 (0.70) 266 (0.83) 292 (0.91) 0.76 1
DTW+Att 247 (0.77) 288 (0.90) 298 (0.93) 0.83 1

Shazam [4] 129 (0.40) 172 (0.54) 187 (0.58) 0.46 4
Shazam [4]+Att 140 (0.44) 174 (0.54) 191 (0.60) 0.49 3

(b) Score-to-audio (S2A) piece identification results.

TABLE I: Piece identification results for both query directions.
R@k: Recall@k, MRR: Mean Rec. Rank, MR: Median Rank.

are transformed into 92-bin log-frequency spectrograms, and
excerpts of roughly 2 seconds of music are segmented with
a hop size of approximately half a second, resulting in audio
snippets with dimension 92× 42 (bins × frames).

We evaluate our piece identification procedure on both
query directions: audio-to-score and score-to-audio; from now
on we refer to these tasks as A2S and S2A, respectively. For
evaluation we calculate standard metrics for document-level
retrieval from the resulting ranked lists: different recalls R@K,
looking at the top K matches; mean reciprocal rank (MRR;
higher is better) and median rank (lower is better).

A. Experiment 1: Baseline vs. Alignment

In the first experiments, we compare our alignment-based
matching procedure to the baseline method. Additionally, we
adapted the Shazam search method [4] to our task by using
the embeddings as the spectral fingerprints from the original
formulation, in order to compare our findings with an efficient
(non-alignment-based) benchmark framework. We define a
search space D with all 321 pieces in one modality and
a query set Q consisting of their respective counterparts.
Then we query each piece Qi ∈ Q in the search collection
D and compute the aforementioned metrics. The results are
summarised in Table I (methods without “+Att”).

Overall we see that the DTW-based strategy performs better,
by a large margin, than the baseline and also the Shazam
method for all evaluation metrics, in both search directions.
The baseline retrieves around 13% of the queries (43 pieces)
correctly as the best match (R@1) in the A2S task, whereas
the DTW method correctly retrieves 61% (195 pieces). Similar
improvements can be seen in the S2A direction. At higher k,
the recall values reach 90% levels. Also noteworthy is the
median rank of 1, indicating that in the majority of cases, the
correct answer indeed appears at the top of the list. Generally,
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the Shazam search method performed better than the baseline,
but not as well as the alignment-based strategy.

A few observations can be derived from this. First, the
considerable improvements of our method indicate that the
learned representations can support meaningful DTW syn-
chronisation paths. The baseline vote-based strategy relies
solely on snippet-wise distance computations, which may not
exhibit the expected projection characteristics (see II-A) for all
excerpts, whereas the DTW-based method can overcome local
projection mismatches by computing an overall alignment
path. Second, we noticed a trend that if a piece creates
problems in one query direction, it also performs poorly in the
opposite direction. Manual inspection revealed that such pieces
failed to generate meaningful embedding vectors, therefore
producing a poor alignment path for the audio-score piece
pair. To illustrate, Figure 2(b) shows the distance matrix of
Chopin’s Prelude No. 22, which gives the worst retrieval
results (ranked at 28 and 179 for A2S and S2A, respectively).
No evident alignment path is visible from the matrix, and the
DTW algorithm appears to have found less costly warping
paths by synchronising the query to other pieces.

B. Experiment 2: Attention Mechanism

In a second experiment, we modify the snippet embedding
model by introducing a soft-attention mechanism [5] to the
audio input. Since in the original approach the snippet di-
mensions are fixed, tempo variations will inevitably affect
the amount of musical content that audio excerpts will ac-
commodate. This leads to discrepancies between what the
network sees during training, and the test data. As a solution,
[5] proposes to increase the audio field of view and let the
network decide on the appropriate temporal context for the
given audio snippet, by adding an attention branch to the audio
pathway of the network. When comparing different audio
snippet lengths, we achieve the best identification results using
an audio context of 4 seconds (84 frames). The same context
window is applied to all methods indicated by +Att in Table I.

We observe additional improvement on both A2S and S2A
tasks, for both baseline and DTW-based methods. In both
directions, now at least 93% of the sought pieces are correctly
returned among the top 10 ranks. More generally, the exper-
iment supports several interesting observations. First we note
that learning better representations, which produced superior
audio-to-score snippet retrieval results [5], also leads to better
piece identification. By simply adding the attention model
to the baseline vote-based strategy, the MRR improves by
approximately 83% and 43% for tasks A2S and S2A, respec-
tively. Moreover, we observe that, while in [5] the attention
models were evaluated only for the audio-to-score snippet re-
trieval direction, the updated models also show positive impact
on sheet-to-audio direction tasks, for all methods. Modifying
the network architecture and adopting an alignment-based
matching strategy revealed the most substantial improvement
over the baseline: 280% and 80% better for the MRR, on the
A2S and S2A task, respectively.

Length (s) 10 20 30 40 50 60 70 80

MRR 0.41 0.51 0.56 0.59 0.61 0.62 0.63 0.64

(a) Audio-to-score direction.

Systems 1 2 3 4 5 6 7 8

MRR 0.45 0.54 0.59 0.63 0.63 0.63 0.63 0.64

(b) Score-to-audio direction.

TABLE II: Fragment-level retrieval results by varying the
length of the query (MRR = Mean Reciprocal Rank).

C. Experiment 3: Fragment-level Retrieval

In this set of experiments, we test our method on incomplete
queries, modelling a realistic scenario where one may not have
the entire piece for a search, but a fragment of an unknown
audio recording or an unlabelled page of sheet music, and
wishes to identify its originating piece. A similar study on
MIDI-to-score retrieval was recently described in [11].

First, we replace the DTW by its variant SDTW [3], to
permit synchronisation of short sequences to longer ones. We
follow the pipeline described in [8]. For the audio queries, we
vary the fragment context from 10 to 80 seconds, in increments
of 10. On the score side, we vary the query sizes in system
units (rows in the score), from one to eight. For each fragment
size, 1,500 queries are randomly selected from our database
and the search is performed and evaluated as before.

The main observation (see Table II) is the upward trend
of the MRR values as queries get longer. The biggest jumps
in performance were obtained when going from 10 to 20
seconds in the A2S retrieval direction, and from one to two
systems on the S2A task. Interestingly, in both directions, the
performance increase rate tends to decrease as the queries get
bigger. A possible explanation is the number of pieces with
structural differences in our collection (see above): a longer
query is more likely to contain such deviations, and increasing
its length appears to be not as meaningful as expected.

D. Experiment 4: Scalability

The last set of experiments evaluates the scalability of our
method. As digitisation of music content rises and online
music/score archives can reach the order of tens of thousands
of items, retrieval systems are expected to scale to larger
collections. Our current music collection is limited in size;
however, we can use it to experimentally investigate how well
our method scaled to our current data volume.

We randomly select smaller subsets of the main collection
and perform short queries in both directions, as in Sec-
tion III-C. For each subset we randomly select 1,000 fixed-size
query fragments, the sizes being 50 seconds and four lines in
the score for the audio and score queries, respectively. Then
we measure the final MRR value and the average search time
per query. We repeat this procedure 10 times for each subset
size and use the average of the results, similarly to [11].

Figure 3 shows the MRR and average search time for both
search directions as the dataset size increases. Regarding the
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(a) Mean reciprocal rank across different dataset sizes

(b) Average search time across different dataset sizes

Fig. 3: (a) MRR and (b) average search time for many dataset
sizes, which are indicated by the horizontal axis (given in
terms of number of entire pieces. Note that, on average, a sin-
gle piece is represented by around 523 audio excerpts and 422
score snippets; a dataset size of 300 pieces thus corresponds
to roughly 160,000 excerpts and 130,000 snippets)

MRR, we consider that the system scaled moderately up to our
current collection size. For instance, the MRR value dropped
less than 0.1 as the dataset size increased from 100 to 321,
for both A2S and S2A.

Regarding the average search time, as expected the system
scaled roughly linearly, since the time complexity of DTW
is O(MN) [3], with M and N the size of the database
and the query length (fixed), respectively. It is clear that
without any efficiency improvement measures, this would not
be practicable for huge music repositories. There are fairly
obvious solutions to this. One way to improve the numbers in
absolute terms is to adopt the re-ranking strategy described
in Footnote 1 and accelerate the voting process via faster
indexing techniques. In [12] we showed how to achieve
speedups of up to 40 times compared to an exhaustive linear
scan, by using a filter-and-refine approach, which made it
possible to efficiently answer nearest neighbour queries in
a collection of 2.5 million songs. An analogous approach,
adapted to our distance measure, would also be applicable in
our present system.

IV. CONCLUSION AND FUTURE WORK

We have presented an audio-score piece identification pro-
cedure that aligns sequences of embeddings learned from sheet
music and audio snippets, and confirmed experimentally, on
complex piano music, that our DTW-based matching strategy
performs better than existing alternative methods, for all exper-
iment setups and in both search directions. The implementation
of all evaluated methods is publicly available.5

5https://github.com/CPJKU/audio sheet retrieval/tree/eusipco-2021

A central problem of our approach is that the DTW
algorithm does not handle substantial structural differences
between performances and scores, caused by, e.g., jumps and
repeats. A number of works [13]–[15] have explored this
theme, however we do not consider the proposed solutions
practical for our applications. Moreover, the scalability exper-
iment uncovered some serious issues regarding the execution
time. There are ideas for addressing the linear growth issues,
but they will require some fundamental changes to the model.
As an example, a potential strategy to overcome the two
aforementioned problems at once is to replace the DTW
strategy with fingerprints computed over the embeddings. This
approach could result in features that are robust to jumps and
repeats in scores, as well as permit a more time-efficient search
engine.
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