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Abstract—Due to advances in deep learning, the performance
of automatic beat and downbeat tracking in musical audio signals
has seen great improvement in recent years. In training such
deep learning based models, data augmentation has been found
an important technique. However, existing data augmentation
methods for this task mainly target at balancing the distribution
of the training data with respect to their tempo. In this paper, we
investigate another approach for data augmentation, to account
for the composition of the training data in terms of the percussive
and non-percussive sound sources. Specifically, we propose to
employ a blind drum separation model to segregate the drum
and non-drum sounds from each training audio signal, filtering
out training signals that are drumless, and then use the obtained
drum and non-drum stems to augment the training data. We
report experiments on four completely unseen test sets, validating
the effectiveness of the proposed method, and accordingly the
importance of drum sound composition in the training data for
beat and downbeat tracking.

Index Terms—Beat tracking, downbeat tracking, source sepa-
ration, data augmentation

I. INTRODUCTION

Beats and downbeats are usually referred to as a sequence
of time instants that human would tap their feet to [1],
[2]. Beats and downbeats define the metrical structure of a
musical piece, and enable numerous higher level tasks such
as structure segmentation, automated DJ mixing, and score
alignment [2]–[4]. Moreover, they are essential foundations
for machines to understand and analyze music. As humans
are able to track musical beats without difficulty in various
musical genres regardless of the existence of drum sounds in
an audio signal, people expect machines to have similar skills.
Thanks to cumulative efforts in the research community, recent
years witness great success of deep learning-based supervised
models for joint beat and downbeat tracking—i.e., a single
model that estimates beats and downbeats at the same time—
for music with steady and strong beats, such as pop, rock, and
dance music [5]. We also focus on the joint beat/downbeat
tracking task in this paper.

Existing deep learning-based methods for beat/downbeat
tracking are mainly supervised models that require labeled

training data, namely audio with annotated labels of beat
and downbeat timing. These approaches usually consist of a
neural network module and a post-processing dynamic model.
The neural network module takes low-level features such as
chroma, spectral flux, or first-order derivatives of magnitude
spectrograms [2], [6]–[8] as input, and outputs an activation
function that indicates the most likely beats and downbeats
time candidates. The post-processing model, be it a dynamic
Bayesian network (DBN), hidden Markov model (HMM) or
conditional random field (CRF), makes binary predictions
from the activation function [2], [8], [9].

Challenges for beat/downbeat tracking can be viewed from
the inherent signal characteristics for different type of music,
such as strong tempo variation, various tempo distribution,
rhythmic variation or syncopation for purposes of creating
metrical tension, and the rather blurred note onsets and transi-
tions caused by non-percussive instruments [10]–[13]. From a
machine learning perspective, the difficulty may also be related
to limitations of model capacity, insufficient labeled data for
training, or potential imbalance of training data. For example,
we note that most available training datasets for beat/downbeat
tracking are pop/rock songs [5]. Moreover, while deep learning
models perform well, the performance of a deep learning
model for beat/downbeat tracking seems to be sensitive to the
composition of training data. We found the training models
with the same model architecture, comparable training data
size, yet different data constitution (e.g., tempo distribution,
percussive/non-percussive sound source percentage) can lead
to significant performance difference on different test sets.

Although not often mentioned together with beat tracking,
music source separation has been another important topic in
music information research. Given a monaural input mixture
(i.e., an audio recording of multiple instruments sounding
together), a source separation model generates separated stems
of different sound sources that composed the mixture [14]–
[18]. Noticing that the total duration and metrical structure of
the stems are basically the same, we conjecture that it may
be useful to apply drum/non-drum separation as a means of

391ISBN: 978-9-0827-9706-0 EUSIPCO 2021



data augmentation, to increase the amount of drum or non-
drum data in our training set. It is therefore our goal in this
paper to investigate variants of such augmentation data and
their usefulness in improving the performance of joint beat
and downbeat tracking. To the best of our knowledge, such a
study has never been presented before.

As our focus is on data augmentation, for the model
architecture, we simply adopt the pipeline of cascading a
long short-term memory (LSTM) network with an HMM-
based dynamic network proposed by Madmom [2], [19], which
represents the state-of-the-art for joint beat and downbeat
tracking across various genres. We evaluate the performance
of our models on four completely unseen datasets in our
experiments, namely ASAP [20], Rock [21], HJDB [11], and
RWC Royalty-Free [22]. We plan to open source our code at
https://github.com/SunnyCYC/aug4beat.

II. BACKGROUND

As the available labeled data for training supervised deep
learning models for beat tracking is limited, research has been
done to enhance the generalizability of models, or to compen-
sate for the relatively insufficient properties in the training set.
Giorgi et al. [23], for example, proposed a deterministic time-
warping operation to help their model learn rhythmic patterns
independently of tempo. Böck and Davies [5] devised a novel
multi-task approach to leverage shared connections in musical
structure, and to simultaneously estimate tempo, beat, and
downbeat. They also proposed an augmentation method based
on changing parameters of the short-time Fourier transform
to expose their model to a wider range of tempi. Zapata and
Gomez [3] proposed an audio voice suppression technique and
a simple low-pass filter to improve beat tracking.

Efforts have been made to tackle beat tracking by treating
percussive/non-percussive features separately. Goto [24] de-
veloped a method to judge if the input audio signal contains
drum sounds, and then used different ways to track the
beats for music with or without drum sounds. Gkiokas et
al. [25] presented an tempo estimation and beat tracking
algorithm which utilized source separation to extract features
of percussive/harmonic components separately. Our work is
different from these prior arts in that we use source separation
as a means to create augmented data for training a supervised
neural network model.

We implement a beat/downbeat tracking model on our
own following the LSTM+HMM architecture described in
the Madmom library [2], [19]. The network consists of three
fully-connected bidirectional recurrent layers with 25 LSTM
units each. After the LSTM layers, a softmax classification
layer with three units produces three activation functions (i.e.,
curves) corresponding to the probability of a frame being ‘a
beat but no a downbeat,’ ‘a downbeat’ or ‘a non-beat’ position.
The output activation functions are then processed by an HMM
to produce the final binary beat/downbeat predictions. In other
words, the model predicts beat and downbeat jointly. In this
paper, the bar length setting required by HMM is set as three
or four beats, following the default setting of Madmom.

TABLE I
THE DATASETS EMPLOYED FOR MODEL TRAINING (TOP) AND TESTING

(BOTTOM) IN OUR EXPERIMENTS; ‘#’ DENOTES THE NUMBER OF MUSICAL
PIECES. THE LAST TWO COLUMNS INDICATE THE PERCENTAGE OF THE

SELECTED DRUM STEMS FOR THE DATASET. MOST OF THE 10 DATASETS
LISTED HERE HAVE THE DRUM STEMS AFTER SOURCE SEPARATION,

EXCEPT FOR RWC CLASSICAL [22] AND ASAP [20], WHICH HAS NO
PRESENCE OF DRUM SOUNDS AT ALL.

Dataset # Total drum presence rate
duration ABSM OSFQ

RWC Classical [22] 54 5h 19m 0.0% 0.0%
RWC Jazz Music [22] 50 3h 42m 29.8% 64.1%
RWC Music Genre [26] 100 7h 20m 39.3% 62.6%
Ballroom [27], [28] 685 5h 57m 59.1% 82.2%
Hainsworth [29] 222 3h 19m 65.0% 75.1%
GTZAN [30], [31] 999 8h 20m 71.2% 79.0%
Carnatic [32] 176 16h 38m 72.8% 84.2%
Beatles [33] 180 8h 09m 75.8% 94.0%
RWC Popular [22] 100 6h 47m 89.5% 90.8%
Robbie Williams [34] 65 4h 31m 93.5% 98.5%

ASAP [20] 520 48h 07m 0.0% 0.0%
Rock [21] 200 12h 53m 83.2% 97.1%
HJDB [11] 235 3h 19m 99.2% 99.2%
RWC Royalty-Free [22] 15 27m 99.9% 99.9%

III. PROPOSED METHOD

A. Source Separation-based Data Augmentation

We propose to employ a source separation model to isolate
out the drum sounds and non-drum sounds for the musical
pieces in the training data for beat/downbeat tracking. In doing
so, we employ Spleeter [16], the current state-of-the-art model
for musical source separation that has publicly available model
checkpoints. Spleeter can generate four separated stems, each
stem corresponding to the sounds of the vocals, drums, bass,
and others, respectively. We simply sum all but the drum stem
as the non-drum stem. If we call the original pieces in the
training set as mixes, we would get the same number of drum
stems and non-drum stems after source separation. For those
pieces that correspond to the same song, we assume that they
share the same metrical structure. Accordingly, we can assume
that the labels of beat and downbeat timing apply equally well
to that corresponding drum stem and non-drum stem.

B. Drum Stem Selection

Since some of our training data may not contain any
drum sounds originally, the drum stems derived from them
would be nearly silent and could be harmful if adopted as
training data. We devise two drum selection criteria to tackle
this. ABSM: Exclude a drum stem if the mean value of its
absolute magnitude in the time domain is less than 0.01 (while
the maximum absolute magnitude is 1), an empirically set
threshold. OSFQ: Exclude a drum stem if the mean value
of its absolute magnitude is less than 0.001 (i.e., looser than
ABSM), or if it has less than one prominent onset per second,
as detected by librosa.onset.onset_detect [35]—
i.e., when its onset patterns is sparse or irregular. See Figure
1 for an example of bass drum excluded by OSFQ.
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Fig. 1. An example of a separated drum stem that would pass the ABSM
filter as it has recognizable drum sounds, yet would not pass the OSFQ filter,
for it lacks regular beat structure as can be seen from the result of onset
detection in the bottom figure. The top figure shows its spectrogram.

After drum selection, we have in total four types of data:
Mix, non-drum, only-drum (ABSM) and only-drum (OSFQ),
for all the pieces in our training set. To manipulate the percent-
age of drum sounds in our training set as data augmentation,
we can use different combinations of them. For example, we
can use Mix with non-drum/only-drum to reduce/increase the
drum sound percentage of our training data, while both usage
can result in comparable total amount of training data. Please
see Table I for the datasets employed in training our models.

IV. EXPERIMENT

We implement models with five data type combinations that
are enabled by source separation, as listed in Table II. The
goal is to see any of these can outperform the baseline case
of using the Mix alone for model training, as it represents the
standard approach as of now. For these models, we randomly
split the top 10 datasets listed in Table I into 80%, 10%,
10% for training, validation and test. During validation, the
parameters of the post-processing HMM model are optimized.
The proposed data augmentation applies to the training sets
only. To alleviate the random effect, we repeat the training of
all models for five times and report the averaged evaluation
results. Due to space limit, we only report the results on the
four unseen test sets on the bottom of Table I. The result on
the testing split of the top 10 datasets is consistent with that
on the unseen test sets.

We consider the model trained with the original mixes as the
baseline in our experiments. We call it “Madmom-like,” for it
uses the same 3-layer bidirectional LSTM+HMM archecture
as the RNNDownBeatProcessor of Madmom [2], [19].

A. Result on the Four Unseen Test Sets

Table III shows the F-measure (F1) results of the proposed
methods. The following observations can be made. Except for
case of the ASAP test set, which is composed of expressive
classical piano performance, the augmented models obtain

TABLE II
THE DATA TYPE COMBINATIONS TESTED IN OUR EXPERIMENTS, ALONG

WITH THE SHORT NAMES OF THE CORRESPONDING MODELS. EACH
MODEL IS TRAINED FROM SCRATCH USING THE TICKED DATA TYPES OF

THE TRAINING SPLIT OF THE 10 DATASETS LISTED IN TABLE I.

Model
Data

mix non-drum onlyDrum
ABSM OSFQ

Mix (baseline)
√

Mix+no-drum
√ √

Mix+only-drum ABSM
√ √

Mix+only-drum OSFQ
√ √

3combABSM
√ √ √

3combOSFQ
√ √ √

different levels of improvement in the other three test sets.
We speculate that this is due to the fact that the dataset
characteristics (e.g., local tempo variation, rhythmic pattern,
note onset/offset patterns) of ASAP is quite different from
most of our training sets. As a result, even though the non-
drum stems are adopted in Mix+no-drum to increase the
percentage of non-drum audio signals in the training set, the
difference between the non-drum of the train sets and ASAP
still deteriorate the performance.

For results of HJDB —a drum-heavy dataset comprising
Hardcore, Jungle and Drum&Bass music excerpts [11], models
augmented by onlyDrum stems gains clear improvement (e.g.,
at least +5.5% relative improvement in downbeat), while
model augmented by non-drum stem gets relatively limited
improvement. Such an observation implies the noticeable in-
fluence of trainset sound source composition on beat/downbeat
tracking performance on different test sets. We also notice
the unexpected downbeat improvement of Mix+no-drum on
RWC Royalty-Free. One reason for this lies within the differ-
ence between HJDB and RWC Royalty-Free. While songs in
HJDB are dominanted by drum sound all the time, songs in
RWC Royalty-Free may be without drum sound for several
measures.

The performance improvement on the Rock dataset is less
obvious than that on either HJDB or RWC Royalty-Free. This
may be due to the fact that the majority of our training data
(as shown in Table I) is composed of rock/pop music—the
baseline model may have learned most of the beat/downbeat
related patterns required for tracking Rock music. The down-
beat improvements are consistently larger than the beat ones,
which may suggest downbeat gains more advantage from the
proposed data augmentation.

In summary, it is clear that the test sets with high drum
presence rate can benefit from the extra stems derived from
source separation and drum selection. And the exact best
combinations/composition of training data depends on the
characteristics of target test set.

B. Case Study: Analysis of Improvement on HJDB

To have an idea of the underlying causes for improve-
ments on HJDB, we compare the model activation functions,
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TABLE III
THE RESULTING F1 SCORES (AVERAGED OVER FIVE RUNS) IN BEAT AND DOWNBEAT TRACKING IN FOUR DIFFERENT TEST SETS UNSEEN AT TRAINING
TIME. EACH MODEL IS TRAINED FROM SCRATCH USING THE TICKED DATA TYPES, SHOWN IN TABLE II, OF THE TRAINING SPLIT OF THE 10 DATASETS

LISTED IN TABLE I. IN EACH COLUMN, WE HIGHLIGHT THE RESULT THAT OUTPERFORMS BASELINE IN BOLD, AND THE BEST RESULT WITH UNDERLINE.

Model ASAP Rock HJDB RWC Royalty-Free
beat F1 downbeat F1 beat F1 downbeat F1 beat F1 downbeat F1 beat F1 downbeat F1

Madmom [2], [19]-like baseline 0.591 0.406 0.874 0.788 0.882 0.679 0.833 0.810
Mix+no-drum 0.586 0.398 0.869 0.796 0.900 0.685 0.861 0.853
Mix+only-drum ABSM 0.589 0.402 0.882 0.800 0.896 0.735 0.865 0.852
Mix+only-drum OSFQ 0.590 0.401 0.874 0.790 0.894 0.771 0.836 0.826
3combABSM 0.583 0.394 0.870 0.794 0.886 0.758 0.837 0.812
3combOSFQ 0.581 0.399 0.868 0.783 0.902 0.757 0.847 0.843

beat/downbeat estimations/annotations and corresponding in-
put feature, and show one representative example from HJDB
in Figure 2. From the top three feature plots, we can observe
the following features of this song: the relative sparseness
of non-drum feature reflects the drum sound dominance.
The number of beats in a time span of three seconds, and
the several drum onsets in between beats indicate this is
a fast tempo song with frequent use of syncopation. These
are features distinguishing HJDB from the other datasets we
employed. From the beat/downbeat estimations (blue/black
vertical lines), we can see that the drum stem-augmented
models (i.e. 3combOSFQ and Mix+only-drum OSFQ) lead to
predictions that are closer to the ground-truth (red vertical
lines) than the baseline. However, such an improvement can
not be achieved without the help of HMM. From the several
‘false-positive’ activation peaks between beats produced by the
three models, we can see the syncopation clearly ‘misleads’
the three models. As the underlying mechanism of HMM
decoding is to find the global optimal path, HMM has the
chance to ‘correct’ the local activation error as long as the
model also produces peaks high enough at the right beat
positions. From the three red squares indicating the critical
beat positions, we can see that Mix+only-drum OSFQ is able
to generate peak at the right positions, while 3combOSFQ
fails for the second square but benefits from HMM. And
the failure of baseline to generate clear peaks at the three
positions not only prevents it from the help of HMM but
also deteriorates HMM’s judgement on downbeat (highlighted
by green square). Looking back to the drum feature again,
it seems reasonable that the augmented models may have
better chance than baseline to learn the idea of syncopation.
While the truth beat/downbeat positions may fall in nearly
silent positions (e.g., between drum onsets) in drum stems,
such cases are less frequent in the original audio mixture
due to the presence of other non-drum sounds. In summary,
this example demonstrates the underlying reasons for the
performance improvement derived by the proposed methods,
and reveals that the HMM plays some role in taking advantage
of the improved network activation prediction.

V. CONCLUSION

In this paper, we have presented a source separation-based
data augmentation technique that utilizes the drum/non-drum

Fig. 2. Estimation (vertical lines) and activation (curves) of beat (blue) and
downbeat (black) on a clip of a song (cut from 17–21 seconds) from HJDB
[11], named “Sweet Vibrations.” The input features (magnitude spectrogram
and its first order derivative) calculated from mixture, drum stem, and non-
drum stem are also partially shown for comparison. Red vertical lines indicate
the ground-truth annotation of beats (dashed) and downbeats (solid). In this
example, the beat/downbeat estimation (finalized by HMM) of the augmented
models, 3combOSFQ and Mix+only-drum OSFQ, are comparable and are
closer to ground-truth, while the baseline model gradually deviates from
the ground-truth annotations. Brown square on the left hand side highlights
the correct estimation of downbeats and ensures the latter errors are not
propagated from previous unshown part of the song. Red/green squares
highlight the critical positions of beats/downbeats that cause the failure
of baseline. The difficulty of this song mainly comes from the frequent
syncopation (i.e., the drum onsets between beats), which could cause false-
positive activation peaks between beats. Although all the three models exhibit
such false-positive activation peaks, the augmented models somehow learn
the idea of syncopation and are able to generate activation peaks at the nearly
silent beat positions, enabling the HMM to ‘correct’ the final results.

stems separated out by source separation to increase the
presence of drum-only and non-drum data in the training
set. We have also reported experiments showing that the
performance of joint beat/downbeat tracking can depend on
the sound source composition of the training set, and that
the proposed data augmentation method leads to performance
improvement across different test sets. For future work, we
are interested in building a beat/downbeat tracking model that
incorporates source separation as part of the model, and in
conducting more experiments on classical music pieces.
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“Madmom: A new python audio and music signal processing library,”
Proc. ACM Multimed. Conf., pp. 1174–1178, 2016.

[20] F. Foscarin, A. McLeod, P. Rigaux, F. Jacquemard, and M. Sakai,
“ASAP: a dataset of aligned scores and performances for piano tran-
scription,” in Proc. Int. Soc. Music Inf. Retr. Conf., 2020, pp. 534–541.

[21] T. de Clercq and D. Temperley, “A corpus analysis of rock harmony,”
Popular Music, vol. 30, no. 1, pp. 47–70, 2011.

[22] M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka, “RWC Music
Database: Popular, Classical, and Jazz music databases,” in Proc. Int.
Soc. Music Inf. Retr. Conf., 2002, pp. 287–288.

[23] B. D. Giorgi, M. Mauch, and M. Levy, “Downbeat tracking with tempo-
invariant convolutional neural networks,” Proc. Int. Soc. Music Inf. Retr.
Conf., pp. 216–222, 2020.

[24] M. Goto, “An audio-based real-time beat tracking system for music
with or without drum-sounds,” Journal of New Music Research, vol.
30, no. 2, pp. 159–171, 2001.

[25] A. Gkiokas, V. Katsouros, G. Carayannis, and T. Stajylakis, “Music
tempo estimation and beat tracking by applying source separation and
metrical relations,” Proc. IEEE Int. Conf. Acoust. Speech Signal Process,
pp. 421–424, 2012.

[26] M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka, “RWC Mu-
sic Database: Music genre database and musical instrument sound
database.,” in Proc. Int. Soc. Music Inf. Retr. Conf., 2003, pp. 229–
230.

[27] F. Gouyon, A. Klapuri, S. Dixon, M. Alonso, G. Tzanetakis, C. Uhle,
and P. Cano, “An experimental comparison of audio tempo induction
algorithms,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 14, no. 5, pp. 1832–1844, 2006.
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