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Abstract—Perceptual audio quality assessment is a task that
involves the characterization and estimation of perceived quality
of an audio signal. Many existing systems, depending on psycho-
acoustic principles and statistical models, achieve reasonable
performance under specific conditions (e.g., type of artifacts,
impairment levels, etc.) but do not generalize well when these
conditions vary. This lack of generality often limits their utility
in real-world scenarios. In this paper, we address this challenge
by leveraging the domain knowledge from several state-of-the-
art expert systems. Particularly, we explore the idea of training
a multitask student model using unlabeled data and the pseudo
labels from multiple expert (i.e. teacher) systems. Evaluation is
conducted using a variety of test datasets, and the results show
that our proposed system compares favorably with the state-of-
the-art systems and achieves the highest overall performance.

Index Terms—audio quality, multitask learning, teacher-
student learning, unlabeled data

I. INTRODUCTION

Assessing perceptual quality is a crucial step in the de-
velopment of many audio algorithms (e.g. source separation
[1], audio coding [2], etc.). Generally speaking, the goal is
to quantify the perceived quality of the processed signals
and understand the perceptual impact induced by the algo-
rithms. A standard procedure of such assessments relies on
the collection of human ratings through carefully designed
subjective listening tests, in which the estimated quality of
the selected audio signals are represented by their Mean
Opinion Scores (MOSs). Despite being an effective approach,
conducting a well-controlled and bias-free listening test is non-
trivial [3] and time-consuming. A computational approach, on
the contrary, has the potential of providing a consistent and
less labor-intensive solution; a robust model not only allows
fast experimentation of research at a smaller scale, but also
enables the examination of audio quality on a large scale.

To computationally assess the perceptual audio quality,
different techniques have been proposed [4], [5]. Existing sys-
tems, such as Perceptual Evaluation of Audio Quality (PEAQ)
[6] and Perceptual Objective Listening Quality Assessment
(POLQA) [7], typically consist of two stages: in the first stage,
features that incorporate domain knowledge such as psycho-
acoustics and human auditory system are extracted; in the
following stage, these features are mapped to a perceptually
meaningful scale through a pre-trained regression model. The
second stage, which relies heavily on the integrity of the

training materials, tends to have a profound impact on the
generality of the resulting model [4]. For example, PEAQ has
been reported to be sub-optimal when tested on low quality
anchors that are different from its training data [8]. Similarly,
POLQA, a quality metric trained on speech signals, was
found to be less suitable for non-speech content [8]. To some
extent, these limitations could be overcome by re-training the
regression model. For instance, POLQA Music [9] was an
adaptation of POLQA to non-speech content using additional
training materials. However, this option is not always feasible
due to the scarcity of publicly available large and diverse
datasets.

In this paper, we address the challenges of model generality
and data availability with the following ideas: first, we apply
the teacher-student learning paradigm [10] to train a student
model using unlabeled data and the pseudo labels, generated
by the teacher models. Next, motivated by the recent success
of multitask learning (MTL) in audio related tasks [11], [12],
we propose a multitask student model that simultaneously
predicts the output of multiple teachers in order to increase
the model generality. To narrow the scope of this study,
we focus on the assessment of degradation from various
audio coding algorithms. The main contributions of this work
include: (i) insights of leveraging unlabeled data and multiple
expert systems as teachers for audio quality assessment, (ii) the
exploration of MTL for improving the generality of the student
model, and (iii) a multitask teacher-student framework for
training a full-reference perceptual audio quality assessment
system that achieves the best overall performance.

II. RELATED WORK

Existing methods for signal-based perceptual audio qual-
ity assessments can be roughly divided into two categories,
namely non-intrusive and intrusive [4]. Non-intrusive methods,
also known as no-reference or single-ended, are designed
to assess the quality of a target signal (i.e., signal with
potential degradation) without any reference signal (i.e., signal
with near-perfect quality). These types of systems offer great
flexibility with less required input, but accuracy is often
compromised due to the absence of a reference. Prior work in
this category mainly focuses on speech quality evaluation [13],
[14], and evaluation of general audio is relatively unexplored.
Intrusive methods, also known as full-reference, assess the
quality of a target signal through a direct comparison to a
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reference signal. These types of systems have a more restricted
use case in exchange for robustness and accuracy. The majority
of the existing methods belong to this category [6]–[8], [15]–
[22], including our proposed system.

Intrusive methods, depending on their signal of interest, can
be further divided into two sub-categories: speech and audio.
Speech focused systems, such as Perceptual Speech Quality
Measure (PSQM) [15], Perceptual Evaluation of Speech Qual-
ity (PESQ) [16], POLQA [7], Hearing-Aid Speech Quality
Index (HASQI) [17], and Virtual Speech Quality Objective
Listener (ViSQOL) [18], typically operate on signals with
narrow bandwidth and often achieve high correlation with
human ratings [4]. Systems designed for audio, such as PEAQ
[6], PEMO-Q [19], ViSQOLAudio [8], [20], Hearing-Aid
Audio Quality Index (HAAQI) [21], and Generalized Power
Spectrum Model (GPSM) [22], operate on full-bandwidth
signals, and their performance tends to be content dependent.
In a comparative study [23], Torcoli and Dick found that
different expert systems are sensitive to different types of
artifacts, which could potentially be attributed to their inherent
designs and training materials. The study also implies the
benefit of having a pool of expert systems with a diverse
domain expertise.

Recently, MTL has been successfully applied to several
audio related tasks [11], [12], [24]. By training a model
to perform multiple related tasks in parallel, MTL is able
to improve the generalization through the shared representa-
tion among these tasks [25]. For example, Hung et al. [11]
proposed a MTL model trained on synthetic data that can
jointly predict instrument, pitch, and piano roll representation
at frame-level, and the results showed that the MTL-based
method generalized well on real data and achieved strong
performances compared to other baselines. Chen and Su [24]
combined the challenging task of chord function recognition
with chord symbol recognition through the MTL framework,
and the results showed promising improvements for chord
function recognition compared to its single task learning (STL)
counterpart. Similarly, Böck et al. [12] proposed a MTL model
for beat tracking and tempo estimations simultaneously. The
resulting model not only performed well on multiple test
datasets, but also showed capability of learning beat tracking
through tempo labels only.

Inspired by the above mentioned studies, we explore the
possibility of building a model which extracts and harmonizes
information from different expert systems through the use of
unlabeled data and the MTL paradigm.

III. METHOD

A. System Overview

The overview of our proposed system is shown in Fig. 1.
The processing steps can be grouped into the training and the
testing phase, respectively. In the training phase, a collection
of unlabeled audio data is first gathered. Four existing expert
systems (see Sect. III-C) are used as teacher models to
generate the pseudo labels for the unlabeled data; these pseudo
labels are predictions from the teacher models and will be

Fig. 1. Flowchart of the proposed system

used as pseudo ground truth for training purposes. To proceed
with training, four selected audio features (see Sect. III-B) are
extracted and scaled. Subsequently, the features and the pseudo
labels are used to train a MTL student model. In particular,
the student model is trained to predict all different pseudo
ground truth labels simultaneously. The testing phase has a
similar pipeline as in training. The same audio features are
extracted from the test data, followed by a feature scaling
process using the parameters estimated from the training data.
A trained MTL student model is then used to predict all
teachers’ opinions at once. Finally, these scores are scaled
to a five-grade MOS range that resembles the result from a
subjective listening test.

B. Feature Extraction

To characterize the perceptual relevance of a signal from
different perspectives, four audio features from previous stud-
ies are combined as the input representation for our sys-
tem. These features are selected from the expert systems
which encapsulate strong domain knowledge [23], and they
are specifically chosen for their strong correlation with each
expert system’s predictions. These features include Noise-
to-Mask Ratio (NMR) [26], weighted Perceptual Similarity
Measure (PSMt) [19], Cepstral Correlation (CepCorr) [21],
and Neurogram Similarity Index Measure (NSIM) [8], which
are referred to as fnmr, fpsmt, fcepcorr, and fnsim for the
remainder of the paper.

The final feature vector can be summarized as vall =
[fcepcorr, fnmr, fnsim, fpsmt]. All four features are scaled to
a numerical range between 0 and 1 using a standard min-max
scaling with the parameters estimated from the training data.

C. MTL Student Model

The MTL student model is a fully-connected deep neural
network (DNN) consisting of four hidden layers. The first two
hidden layers each contain 64 neurons, and the third and fourth
layers contain 32 and 16 neurons, respectively. All layers use
Rectified Linear Unit (ReLU) activation functions. Each layer
is followed by a dropout = 0.3. The output layer consists of
four neurons with Sigmoid activation functions. This model
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architecture is chosen for its simplicity, and the exploration of
more sophisticated architectures is left as a future work.

The model is trained by optimizing the following loss
function:

LMTL = MSE(ŷ, ypseudo), (1)

where MSE() is the mean squared error, ŷ = [t1, t2, t3, t4]
are the outputs (i.e. learned tasks) of the model, and ypseudo =
[yhaaqi, ypeaq, ypemoq, yvisqol] are the pseudo labels generated
from all teacher models; the teacher models include HAAQI1,
PEAQ2, PEMO-Q3, and ViSQOLAudio4. In this paper, the
objective of a task is to approximate a specific teacher model.
All pseudo labels are linearly scaled to a range of 0 to 1 using
their theoretical min/max values (e.g., {0, 1} for HAAQI, {-4,
0} for PEAQ and PEMO-Q, and {1, 5} for ViSQOLAudio).
The resulting MTL student model is able to perform four tasks,
and the output of each task can be mapped to a five-grade scale
and used as an individual metric.

The model is implemented in Python using Tensorflow
with Keras module.5 All weights of the DNN are randomly
initialized and optimized using Adam [27], and the model is
trained using a learning rate lr = 0.001 for 400 epochs with
the batch size = 32.

IV. EXPERIMENT

A. Experiment Setup

The following systems are included for benchmarking:
• SNR: a simple baseline that computes the signal-to-noise

ratio between the reference and noise signal.
• HAAQI: a teacher model based on [21].
• PEAQ: a teacher model based on [6].
• PEMO-Q: a teacher model based on [19].
• ViSQOLAudio: a teacher model based on [20].
• STL-(HAAQI, PEAQ, PEMO-Q, ViSQOLAudio): student

models that are trained to approximate each of the four
teachers independently.

• MTL-(T1, T2, T3, T4): the proposed MTL student model.
Each output task is evaluated individually.

• MTL-(mean, gmean, median): a variant of the MTL student
model by aggregating the four output tasks into one value.
Three different aggregation methods are evaluated, namely
the arithmetic mean, geometric mean, and median.
All of the above single task learning (STL) models have

the same architecture as the MTL model except for the output
layer, which contains only one Sigmoid neuron.

To account for the random initialization of DNN-based
models (i.e., systems denoted by STL or MTL), the evaluation
is repeated 5 times; in each run, the unlabeled data is randomly
split into 90%/10% for training and validation, and the result-
ing model is tested on all the test datasets. Finally, the mean
and standard deviation of the main metric (see Sect. IV-B)

1Matlab implementation provided by the author
2http://www-mmsp.ece.mcgill.ca/Documents/Software, 2021.02
3http://bass-db.gforge.inria.fr/peass/PEASS-Software.html, 2021.02
4https://qxlab.ucd.ie/index.php/audio-and-music, 2021.02
5https://www.tensorflow.org/api docs/python/tf/keras, 2021.02

TABLE I
LIST OF TRAINING AND TEST DATASETS

Usage Name #Files Total
Dur. (hr)

Publicly
Available?

Training UnlabeledTV2020 3250 17.97 N

Test

Bs1387Conform 32 0.13 Y
CoreSV14 280 1.47 Y

UnbAvq2013 24 0.05 Y
NLow 63 0.20 N
NHigh 36 0.12 N

across 5 runs are computed. Note that none of the test datasets
are used for training, which represents the most generalizable
evaluation scenario.

B. Metrics

The standard calculation of Pearson’s correlation coefficient
r is used as the main metric. For each test dataset, this metric is
computed by correlating the predictions from each system with
the human ground truth labels. In addition to the individual
r, an overall metric r̄∗ is calculated using an approximately
unbiased minimum-variance estimator as described in [28],
which accounts for the unequal sizes of different datasets; this
estimator summarizes the results across all test datasets and
computes the weighted average of correlation coefficients. Ad-
ditional metrics, such as root mean square error (RMSE), are
also computed and made available in our online repository.6

C. Datasets

The list of datasets used in this paper is shown in Table I.
The details of each dataset is explained as follows:
• UnlabeledTV2020 is a proprietary unlabeled dataset created

from the audio tracks of various TV shows. The audio
content includes dialogue, sound effects, and music. There
are 250 episodes from 5 different languages (i.e., English,
Spanish, French, Japanese, and Brazilian Portuguese). A
20 sec audio clip is extracted from each episode and subse-
quently processed by 12 different treatments (i.e., processing
methods such as audio coding and filtering), including:
(i) 3.5 kHz lowpass (ii) 7 kHz lowpass (iii) 64kbps HE-AAC-
v1 (iv) 96kbps HE-AAC-v1 (v) 96kbps EAC3 (vi) 32kbps
MP3 (vii) 48kbps MP3 (viii) 96kbps MP3 (ix) 32kbps Opus
(x) 48kbps Opus (xi) 96kbps Opus, and (xii) 96kbps Vorbis.
The resulting training dataset consists of 3250 audio clips
(≈ 18 hrs), which is significantly larger than other labeled
test datasets listed in Table I.
For evaluation, we use five different labeled datasets:

• Bs1387Conform: these are 32 audio clips for validating the
implementation of PEAQ7. The audio content includes short
clips of speech or instrumental sounds (e.g., harpsichord,
snare drum, triangle, etc.).

• CoreSV14: this is a crowd-sourced dataset8 which consists
of 35 music samples and 5 speech samples. Each sample is

6https://github.com/cwu307/mtl audio qual, 2021.02
7https://www.itu.int/rec/R-REC-BS.1387-1-200111-I/en, 2021.02
8http://listening-test.coresv.net/results.htm, 2021.02
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TABLE II
EVALUATION RESULTS OF ALL SYSTEMS (SEE SECT. IV-B FOR THE DETAILS ON METRICS). ALL THE RESULTS HAVE STANDARD DEVIATION σ ≤ 0.05,

AND (∗) INDICATES THE RESULT WITH σ ≥ 0.04. THE BEST PERFORMING SYSTEM OF EACH COLUMN IS IN BOLD.

Role Systems Test Datasets OverallBs1387Conform CoreSV14 UnbAvq2013 NLow NHigh
Baseline SNR 0.332 0.657 0.479 -0.298 0.312 0.461

Teacher

HAAQI 0.466 0.854 0.656 -0.346 0.207 0.594
PEAQ 0.922 0.945 0.314 -0.330 0.558 0.686

PEMO-Q 0.804 0.914 0.680 0.173 0.648 0.764
ViSQOLAudio 0.706 0.782 0.620 0.883 0.383 0.759

STL
Student

STL-HAAQI 0.436 0.876 0.631 -0.319 0.181 0.608
STL-PEAQ 0.494 0.823 0.551 0.160* 0.679 0.684

STL-PEMO-Q 0.802* 0.926 0.642 0.441 0.682 0.815
STL-ViSQOLAudio 0.781 0.783 0.521* 0.863 0.358 0.753

MTL
Student

MTL-T1 0.677 0.900 0.620 -0.269 0.525* 0.668
MTL-T2 0.675 0.859 0.583 0.090* 0.597 0.700
MTL-T3 0.868 0.920 0.677 0.411 0.643 0.808
MTL-T4 0.866 0.886 0.575 0.875 0.614 0.850

MTL
Student

Aggregated

MTL-mean 0.856 0.909 0.637 0.560 0.613* 0.819
MTL-gmean 0.888 0.902 0.644 0.782 0.613 0.851
MTL-median 0.855 0.920 0.640 0.600 0.630 0.834

processed with 6 different treatments, including: (i) 48kbps
FAAC (ii) 96kbps FAAC (iii) 96kbps QAAC (iv) 96kbps
Opus (v) 96kbps Vorbis, and (vi) 128kbps MP3. In total,
there are 280 audio clips with crowd-sourced MOSs.

• UnbAvq2013 [29]: this dataset consists of 6 audio samples
from different scenes (e.g., sports event, music performance,
news report, etc.). Each sample is processed with 3 treat-
ments, including: (i) 32kbps MP3 (ii) 96kbps MP3, and
(iii) 128kbps MP3. The resulting dataset contains 24 audio
clips with subjective ratings.

• NLow: this is a proprietary dataset of low-bitrate coded
items. This dataset consists of 7 audio samples from var-
ious acoustic scenes (e.g., dialog, environmental sounds,
music, etc.); each sample is processed with 8 treatments,
including: (i) 3.5 kHz lowpass (ii) 7 kHz lowpass (iii) 32kb-
ps HE-AAC-v1 (iv) 64kbps HE-AAC-v1 (v) 24kbps HE-
AAC-v2 (vi) 32kbps HE-AAC-v2 (vii) 16kbps xHE-AAC,
and (viii) 24kbps xHE-AAC. A total number of 63 audio
clips are included in this dataset. The subjective scores of
these items were collected from an internal listening test
conducted over loudspeakers.

• NHigh: this is another proprietary dataset of high-bitrate
coded items. There are 9 audio samples from various acous-
tic scenes (e.g., crackling fire, gun shots, music, etc.); each
sample is processed with 3 treatments, including: (i) 96kbps
HE-AAC-v1 (ii) 128kbps HE-AAC-v1, and (iii) 128kbps
AAC-LC. A total number of 36 audio clips are included
in this dataset. The subjective scores of these items were
collected from an internal headphone listening test.
All of the above mentioned datasets were decoded to the

PCM format with sampling rate = 48 kHz and bit depth =
16. All the ground truth labels are linearly converted to the
standard five-grade scale for consistency.

V. RESULTS AND DISCUSSION

The evaluation results are shown in Table II. The following
observations can be made by comparing the baseline and

teacher models: first, SNR does not achieve a comparable
performance with other teacher models. This result is expected
since this metric does not take into account any human percep-
tion. Second, all of the teacher models seem to perform reason-
ably well on at least one dataset while falling short on another.
This result suggests that each teacher model has its own
domain expertise, and none of them is versatile enough for all
test datasets. Overall, the teacher models seem to perform well
on CoreSV14 and struggle on NLow. A possible explanation
is that NLow was based on a listening test conducted on
loudspeakers, which is an outlier among the test datasets.
Nevertheless, ViSQOLAudio achieved a good performance on
NLow, which shows the possibility of correctly predicting the
perceptual quality of this heterogeneous challenging dataset.

A few interesting questions could be also answered by
further observing the results. First, does MTL help the student
model generalize better? By comparing the results between
the STL and teacher models, each STL model seems to
perform similarly with its corresponding teacher. This result is
expected since the STL model is approximating the underlying
function of a teacher model including its weaknesses. The
MTL student model, on the other hand, is able to learn from
multiple teachers and derive a more generalizable system. As
a result, each learned task (i.e., MTL-T1 to T4) is able to
outperform its corresponding teacher model and achieves a
better overall performance. Second, is it beneficial to aggregate
four learned tasks? Based on the overall performance, MTL-
T4 and MTL-gmean seem to perform similarly. However, a
further comparison of their coefficient of determination R2

(0.52 versus 0.67) suggests a superior performance from the
MTL-gmean. In short, our results show that geometric mean
could be a simple yet effective way of aggregating the outputs
from a MTL student model, but the optimal strategy still
requires more investigations. It is worth noting that MTL-
gmean does not exceed the teacher models by outperforming
on any specific test dataset; instead, the MTL-gmean is able to
perform comparably with the best teacher model on each test
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dataset and eventually achieve the highest overall performance.
This result implies the advantage of MTL-based student mod-
els in terms of fusing and harnessing the knowledge from
teacher models without explicit human guidance.

VI. CONCLUSION

In this paper, we have presented a multitask teacher-student
framework for perceptual audio quality assessment. The pro-
posed system integrates audio features derived from differ-
ent psycho-acoustic principles and simultaneously performs
multiple assessments. Specifically, the MTL student model is
trained to approximate several teacher models at once using
an unlabeled dataset and pseudo labels. The evaluation results
show that our proposed system performs consistently well
on different test datasets and achieves the highest overall
performance. One potential limiting factor in our proposed
method is the pool of teacher models, and the impact of
different compositions of the pool still requires further in-
vestigations. Nevertheless, the proposed framework provides
an effective strategy of fusing the expert knowledge without
any predetermined weighting mechanism. Future directions
of this work include: (i) adding more features. With the on-
going research in human auditory perception, more features
could be added to help the system capture more perceptually
relevant information, (ii) investigating different methods for
aggregating the learned tasks. In addition to geometric mean,
more sophisticated methods such as linear regression could be
used as a late-fusion strategy to better combine the learned
tasks, (iii) exploring different architectures. Particularly, mod-
els such as Recurrent Neural Networks (RNNs) or Temporal
Convolutional Networks (TCNs) could potentially leverage
the temporal information and lead to improvements, and
(iv) verifying the generality of the proposed framework for
assessing the quality of other audio processing methods such
as noise reduction and source separation.
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