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Abstract—Accurate and reliable identification of the relative
transfer function (RTF) between microphones with respect to
a desired source is an essential component in the design of
microphone array beamformers. In this paper, we present a
robust RTF identification method on manifolds, tested and
trained with real recordings. This method relies on a manifold
learning (ML) approach to infer a representation of typical RTFs
in a confined area within an acoustic enclosure. We propose
a robust supervised identification method that combines the a
priori learned geometric structure and the measured signals. A
series of experiments using a recently established database of
acoustic responses taken at the Bar-Ilan university acoustic lab,
demonstrate the effectiveness of the proposed approach over a
standard, non-robust, beamforming design method.

Index Terms—Multi-channel speech enhancement, RTF iden-
tification, Manifold learning, Robust beamforming

I. INTRODUCTION

Modern acoustic beamformers, which take into account the
entire acoustic propagation path, require the acoustic impulse
responses (AIRs) relating the source and the microphones
(or their respective acoustic transfer functions (ATFs)). Since
ATF estimation is a blind problem, it was proposed in [1] to
substitute the ATFs with the RTFs in the beamformer design.
It was further shown in this work that the RTFs can be
non-blindly estimated from the received microphone signals.
Accurate identification of the RTFs leads to a significant
improvement of the beamformer performance as compared
with beamformers that only utilize the direct-path propagation.
A plethora of RTF estimation procedures can be found in the
literature [1]–[7]. However, the performance of these methods
often deteriorates in presence of high-level noise and severe
reverberation.

There is a rich literature on robustifying beamforming,
usually by some type of beam widening [8]–[15]. In this work
we choose to improve the estimated steering vector, the RTF
in our case, by utilizing a pre-learned set of RTFs. For this,
we harness the manifold leaning paradigm to infer a low-
dimensional representation of RTFs.
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1-CZ01-KA107-034883; the Israeli Innovation Authority through KAMIN
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cessing” and the European Union’s Horizon 2020 Research and Innovation
Programme under Grant Agreement No. 871245.

Despite their intricate structure, RTFs are governed by a
few parameters, e.g., the size and the geometry of the room,
the positions of the source and the microphones, and the
reflective properties of the walls, as was analyzed in [16].
Consequently, the acoustic paths exhibit geometric structures
of low-dimensionality, which are often referred to as mani-
folds, and may be accurately parameterized using manifold
learning (ML) methods.

In this work, we focus on scenarios where the source
position is confined to a region within a known acoustic
environment and assume the availability of a training set,
specifically, a set of RTFs from the region of possible source
positions in this environment.

We follow the footsteps of [17], with some modifications,
and learn the manifold of the training RTFs using an ex-
tendable kernel method [18]. The method relies on Laplacian
eigenmaps and diffusion maps and applies spectral graph
theory to infer a low-dimensional embedding of the learned
RTFs. Then, we utilize the extendable learned model and
construct a robust supervised RTF identification method. The
inferred RTFs is then used as the steering vector of a min-
imum variance distortionless response (MVDR) beamformer.
The performance of the proposed method, in terms of noise
reduction and speech intelligibility, is validated in various
signal-to-noise ratios (SNRs) and reverberation levels using
a recently established database recorded at Bar-Ilan acoustic
lab [19].

Our method differs from [17] in the following aspects: 1)
we use a different RTF estimator based on the generalized
eigenvalue decomposition (GEVD), 2) we use a different
kernel normalization in the manifold inference, and, most im-
portantly, 3) we use real recorded data rather than simulations
in [17].

II. PROBLEM FORMULATION

We consider a room with an array of M microphones in
a fixed location and assume that the possible positions of
the desired source are confined to a specific known region.
Let xm(t),m = 1, . . . ,M , denote the measured signal at the
mth microphone, s(t) denotes the desired speech signal, and
vm(t),m = 1, . . . ,M the contribution of all noise sources, as
captured by the mth microphone. Each microphone input is
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given by
xm(t) = {s ∗ am}(t) + vm(t) (1)

where am(t) is the AIR from the source to the mth micro-
phone at time t, and ∗ is the convolution operator. In the
static case, where the speaker is not moving, the AIR becomes
time-invariant. The time-domain convolution in (1) can be
approximated by a multiplication in the short-time Fourier
transform (STFT) domain and can be written in a vector form
as

x(n, f) = s(n, f)a(f) + v(n, f), (2)
= s̃(n, f)h(f) + v(n, f),

where n, f are the time-frame and frequency-bin in-
dexes, respectively, n = 1, . . . , N , f = 1, . . . , F , and
a(f) = [a1(f), . . . , aM (f)]>. We also define s̃(n, f) =
s(n, f)aref(f), the source signal as captured by the reference
microphone, and h(f) the vector of RTFs defined as

h(f) ,
a(f)

aref(f)
, (3)

where aref(f) is the component of vector a(f) corresponding
to the reference microphone, arbitrarily set as microphone #1.

Given a training set of RTFs from a confined volume in
the room, obtained in noiseless conditions, we are interested
in improving noisy RTF estimates from the same volume, in
order to robustify a beamformer design.

III. RTF IDENTIFICATION ON MANIFOLDS

In this section, we first summarize the GEVD-based RTF
estimation procedure, which yields an unbiased estimator
using the available input signals and an estimate of the noise-
only spatial correlation matrix. Then, we explore the diffusion
maps framework, which enables us to infer the RTF manifold.
Finally, we show that the geometric harmonics framework,
which facilitates the extension of the learned model to new
noisy RTFs, yields a more accurate RTF estimate that may
improve the beamformer performance, both in noise reduction
and speech distortion measures.

A. GEVD RTF identification

In [2], [4], it was shown that the RTF can be estimated
from the GEVD of the spatial correlation matrices of the noisy
signals Φxx(f)1 and of the noise-only signals Φvv(f). The
latter is estimated from noise-only segments, assumed to be
available. The RTF is estimated by solving

Φxx(f)ϕ(f) = µ(f)Φvv(f)ϕ(f). (4)

Using ϕ(f), the generalized eigenvector corresponding to
µ(f), the largest generalized eigenvalue, the vector of RTFs

ĥGEVD(f) , [ĥGEVD
1 (f), . . . , ĥGEVD

M (f)]> (5)

1In the more general form it can be time-varying, but here we assume that
the RTF is time-invariant, so we use an average over all time segments.

can be computed as:

ĥGEVD(f) =
Φvv(f)ϕ(f)

(Φvv(f)ϕ(f))ref
. (6)

Define hkm(f), the RTF associated with the kth training
location, k = 1, . . . , Nt, and the mth microphone at the
f th frequency bin and hk

m the respective vector constructed
by concatenating all frequencies. The training sets Rm =
{hk

m}
Nt
k=1 of all RTFs associated with the mth microphone,

are obtained by applying the GEVD procedure to the noiseless
training recordings. In the absence of noise Φvv in (6) is
substituted by an identity matrix, such that (4) simplifies to
the eigenvalue decomposition (EVD) problem.

B. The diffusion framework

The geometry of Rm can be studied using the Laplacian
operator which is defined by the divergence of the gradient
of a manifold in an Euclidean space. The Laplacian contains
all information regarding the manifold geometry and describes
the time-evolution of a diffusion process over the manifold. It
is an infinite-dimension operator defined on continuous spaces.
However, in our case, only a finite set of samples on the
manifold is available. Based on this discrete set of samples, we
represent the manifold by a graph where the observations are
the graph nodes, and the weights of the edges are defined using
the heat kernel function. We then define a Markov process
on the graph by constructing a transition matrix, which is a
discretization of the diffusion process on the manifold.

We construct M − 1 graphs, a graph Gm =
(Rm,Wm),m = 2, . . . ,M for each microphone except
the reference microphone. The graph nodes are the RTFs
of the training set and the edges are weighted according
to the Gaussian heat kernel Wm, whose (i, k)th element
i, k ∈ 1, . . . , Nt is given by

wm(i, k) = e−
‖him−hkm‖

2

2ε , (7)

with ε > 0 is a kernel scale parameter. The kernel measures
the pairwise similarity between the points in Rm.

We normalize the kernel matrix and obtain a Markov
transition matrix Pm, where its (i, k)th element is given by

pm(i, k) =
wm(i, k)

dm(i)
(8)

with dm(i) =
∑Nt

k=1 wm(i, k) a normalization factor. Since
Pm comprises nonnegative values, and since each row is
summed to 1, pm(i, k) can be viewed as the probability of
transition from node i to node k in one random step. These
probabilities measure the connectivity of the graph nodes.
Since the RTFs are governed by the position of the source,
the kernel enables capturing the actual variability in terms of
the source position based on the measurements. The transition
matrix Pm is similar to a symmetric matrix Am, and is
therefore denoted as its conjugate, given by

Am = D
1
2
mPmD

− 1
2

m (9)
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where Dm is the diagonal matrix with the elements dm(i)
on its diagonal. The symmetric matrix Am has Nt real
eigenvalues {λmj }

Nt−1
j=0 and a set of orthogonal eigenvectors

{vm
j }

Nt−1
j=0 in RNt . Therefore, it can be stated in terms of the

following spectral decomposition:

Am =

Nt−1∑
j=0

λmj vm
j (vm

j )>. (10)

The EVD of the kernel captures its significant components and
provides a compact parameterization of the manifold of RTFs.
Moreover, the eigenvectors can be viewed as functions of the
training RTFs, where the ith coordinate of each eigenvector
is associated with the ith training RTF. The eigenvectors
form a complete basis for any function of the data, and each
coordinate of the training RTFs can be expressed as a linear
combination of this basis:

him(f) =

Nt−1∑
j=0

cmj (f)vmj (i) (11)

where cmj (f) = 〈vm
j , [h

1
m(f), . . . , hNtm (f)]>〉 are the projec-

tion coefficients on the basis vectors. Since Pm is conjugate
to Am, the eigenvalues of both matrices are identical [18]. In
addition, {φm

j }
Nt−1
j=0 and {ψm

j }
Nt−1
j=0 are the corresponding

left and right eigenvectors of non-symmetric Pm, and the
following relations hold φm

j = D
1
2
mvm

j and ψm
j = D

− 1
2

m vm
j .

The eigendecomposition of the transition matrix Pm is hence
given by:

Pm =

Nt−1∑
j=0

λmj ψ
m
j (φm

j )>. (12)

As was shown in [20] the spectrum (eigenvalues), written in a
descending order 1 = λm0 ≥ λm1 ≥ . . . λmNt−1, decays rapidly
such that only a few terms are required to obtain a sufficient
accuracy in the sum (12). Hence, we look for the spectral gap
to determine `, the number of dominant eigenvalues, which
defines the intrinsic dimension of the manifold.

The diffusion map {Ψm}, which is defined for each point
i in the dataset as

Ψm(i, :) = [λm1 ψ
m
1 (i), λm2 ψ

m
2 (i), . . . , , λm` ψ

m
` (i)],

embeds each point i in the dataset into an Euclidean space.
This embedding is a new parametrization of the data in a lower
dimension space, which captures the manifold underlying
parameters and respects the manifold geometric structure. It
was also shown that, in these new coordinates, the Euclidean
distance between two points in the embedded space represents
the distance between the two high-dimensional points, as
defined by a random walk on the manifold surface, namely,
the diffusion distance.

C. The geometric harmonics

After obtaining a low dimension embedding of the RTFs in
the training set, we would like to extend it to new measured
data at test time. By doing so, we wish to improve noisy

estimates of RTFs using the information extracted from the
learned manifold. Geometric harmonics [21] is a method that
extends a low-dimensional embedding to new data points.

Let Bm be a non-symmetric kernel defined between any
RTF in our test set h̃q

m, q = 1, . . . , NTest, NTest > 1 and each
of the RTFs in the training set, whose (q, i)th element is given
by

bm(q, i) =
w̃m(q, i)

d̃m(q)zm(i)
(13)

where w̃m(q, i) = e−
‖h̃qm−him‖

2

ε with d̃m(q) =
∑
i

w̃m(q, i)

and zm(i) =
∑
q

w̃m(q,i)

d̃m(q)
normalization factors. It was shown

in [22] that the construction of the original training kernel
satisfies Am = B>mBm. Moreover, Cm = BmB>m can be
seen as an extended kernel, whose (q, q′)th element measures
the probability that any two RTFs h̃q

m, h̃
q′

m are associated with
the same training RTF, and its eigenvectors {ξmj } provide an
extended parameterization for any RTF. Am and Cm share
the same eigenvalues {λmj }, which are the square of the
singular values of Bm. The eigenvectors {vm

j } of Am are
the right singular vectors of Bm, and the eigenvectors {ξmj }
of Cm are the left singular vectors of Bm. The singular value
decomposition (SVD) of Bm describes the algebraic relation
between the eigenvectors

ξmj =
1√
λmj

Bmvm
j . (14)

Based on the Nyström extension and using the extended
eigenvectors obtained in (14), the relation in (11) can be
expanded into any RTF from the learned region of the room,
provided that λmj 6= 0:

h̃qm(f) =
∑̀
j=1

cmj (f)ξmj (q) + ηm(f), (15)

= (BmOm)(q, f) + ηm(f),

where ηm(f) is a modelling error term that depends on ε and
stems from the use of the coefficients cmj (f), inferred from the
training set, rather than recalculating them with the additional
RTFs in the test set. The error term becomes smaller if either
the number of training RTFs or ` increases. The matrix Om

can be computed in advance and its (i, f)th element is given
by:

om(i, f) =
∑̀
j=1

cmj (f)√
λmj

vmj (i). (16)

If the parameterization of a single test RTF h̃m is required, the
matrix Bm is reduced to a vector, and (15) should be rewritten
by concatenating all frequency bins as h̃m = O>mbm + ηm,
where bm is a vector of length Nt whose ith element is defined

similarly to (13) as bm(i) = e−
‖h̃m−him‖

2

ε /d̃m, with d̃m =∑
i

e−
‖h̃m−him‖

2

ε .

Ideally, we would like to combine (6) and (15) to get an
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estimate of the test RTFs ĥq
m, q = 1, . . . , NTest; m = 2, . . . ,M

ĥq(f) =
Φvv(f)ϕ(f)

(Φvv(f)ϕ(f))ref
, f ∈ [1, . . . , F ]

subject to
(BmOm)(q, f)− ĥqm(f) ≤ δ (17)

where δ is a small constant (assuming the modelling error is
negligible). However, since h̃q

m are required for calculating
Bm, the equation becomes highly nonlinear and difficult to
solve. Following [17], we relax the problem and apply a
two-stage and sub-optimal solution. In the first stage, we
obtain a solution ĥq,GEVD(f) by solving the GEVD problem
(4) for each location (indexed by q) in our test set and for
each frequency bin. In the second stage, we utilize the prior
geometric information and project the GEVD solution onto
the building blocks of the learned manifold, explicitly:

ĥq
m(f) = (Bm({ĥq,GEVD

m }NTest
q=1 )Om)(q, f) (18)

where the notation Bm({ĥq,GEVD
m }NTest

q=1 ) implies substitution
of h̃q

m in (13) with the RTFs ĥq,GEVD
m that are directly

estimated from the measured data. Algorithm 1 summarizes
the manifold-based RTF estimation procedure.

Algorithm 1: RTF identification on manifolds
Learning the Manifold of RTFs (Training Stage):

1) Obtain training recordings from the region of interest
in the room in noiseless conditions

2) Compute a training set {Rm}Mm=2 of typical RTFs (6)
3) Construct the normalized kernels Am (7)-(9)
4) Compute the eigenvalue decomposition {λmj ,vm

j }j of
the kernels Am and construct Om the projection
coefficients on the basis (16)

Supervised RTF Identification (Test Stage):
1) Obtain a new segment of measurements
2) Estimate the RTF using the GEVD (6)
3) Confine the RTF to the learned manifold (18)

IV. PERFORMANCE EVALUATION

The proposed method was evaluated with several, objective
and subjective, performance measures using the MIRaGe
dataset [19] comprising multichannel recordings acquired at
Bar-Ilan acoustic lab.
Experimental Setup: In the database, a loudspeaker is located
on a grid of points in a cube-shaped volume of dimensions
46 × 36 × 32 cm. The possible positions of the loudspeaker
form a grid sampled every 2 cm across the x-axis and y-
axis and every 4 cm across the z-axis. Overall, there are
24× 19× 9 = 4104 possible source positions (grid vertices).
Besides, 25 other positions, denoted out of grid (OOG), were
used as possible positions of the noise sources. For each
position (both in grid and OOG) a chirp signal was played.
The entire setup was recorded by six static linear microphone
arrays, each of which consisting of M = 5 microphones

with inter-microphone spacing of −13,−5, 0,+5 and +13 cm
relative to the central microphone (the reference microphone).
The entire setup was recorded in three reverberation levels
of 100, 300, and 600 ms. For our experiments we used
microphone array #2, which is placed directly in front of the
grid at the distance of 2 m from the center of the grid. The
recordings were randomly divided to 80% training (Nt = 3283
positions) and 20% test (NTest = 821 positions).

For the estimation of the RTF at the training stage, the
following procedure was applied: 1) using the chirp signals
recorded in the MIRaGe database the AIRs from the source
position to the microphone arrays were estimated, then 2)
speech signals (not used during the subsequent test phase)
were convolved with the AIRs to generate clean microphone
signals, and finally 3) RTFs were estimated using (6).

The kernel scale was chosen via numerical optimization
following a cross-validation procedure and was set to ε = 3
for T60 = 100, 300 ms and to ε = 0.5 for the T60 = 600 ms.
The manifold dimensions were similarly set, while respecting
the spectral gap and ensuring that λk 6= 0, k = 1, . . . , `. For
our database we chose ` = 48 for T60 = 100, 300 ms and
` = 7 for T60 = 600 ms. The RTFs length was set to be
F = 2048, and the sampling rate was set to 16 kHz.

For each point in the test set, three different speech signals
were convolved with the AIRs, similarly to the training phase.
In addition, additive noise was generated by convolving two
pink noise signals with two AIRs corresponding to two fixed
OOG positions, with SNR in the range of [−10 : 10] dB.

An MVDR beamformer [1] was constructed for every
position in the test set,

wq
MVDR(f) =

Φ−1vv,q(f)ĥq(f)

(ĥq(f))HΦ−1vv,q(f)ĥq(f)
(19)

where Φvv,q(f) is the M ×M power spectral density (PSD)
matrix of the received noise signals at the f th frequency bin
associated with the qth testing location.

The results are analysed using two quality measures, the
SNR at the beamformer output and the short-time objective
intelligibility (STOI) quality measure [23]. The results are
averaged across the 3 different speakers and the 821 test
positions. The performance measures are compared with other
MVDR beamformers using either the vanilla GEVD estimate
of the RTFs or the RTF corresponding to a source at the center
of grid (CoG).
Results: Tables I, II and III depict the SNRout and STOI
quality measures, for T60 = 100, 300, 600 ms, respectively.
The analyses of the results will be split into two SNR ranges,
above and below 5 dB. For SNR < 5 dB, the ML algorithm
outperforms the competing algorithms, as it was able to
reliably estimate the RTFs even in high reverberation levels.

Comparing the ML-based RTF estimation and the arbitrary
CoG RTF selection, demonstrates the usefulness of the pro-
posed approach. For SNR ≥ 5 dB, the robustness of the ML
approach becomes a disadvantage and the GEVD demonstrates
improved speech intelligibility figures (but still lower SNRout,
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reflecting slightly higher distortion level). Similar trends were
observed for diffused noise. The advantages of the proposed
ML scheme for SNRin = −10 dB and T60 = 600 ms, are also
subjectively demonstrated by assessing sonograms (Fig. 1),
and sound samples.2
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(a) Noisy signal
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(b) GEVD output
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(c) ML output
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(d) CoG output

Fig. 1: Sonograms: SNRin = −10 dB and T60 = 600 ms.

TABLE I: SNRout [dB] and STOI [%] scores for T60 = 100 ms
SNRout dB STOI [%]

Alg.\SNRin[dB] −10 −6 −2 2 6 10 −10 −6 −2 2 6 10

Unprocessed -10 -6 -2 2 6 10 37.8 47.3 58.6 70.3 80.7 88.4
GEVD 1.5 6 11.1 16.5 22.1 27.3 67.1 75.9 83.6 89 92.5 94.7
CoG 9 13 17 21 25 29 79.7 83.4 85.9 87.4 88.2 88.6
ML 9.2 13.2 17.2 21.2 25.2 29.1 81.4 85.3 87.7 89.2 90 90.4

TABLE II: SNRout [dB] and STOI [%] scores for T60 = 300 ms
SNRout dB STOI [%]

Alg.\SNRin[dB] −10 −6 −2 2 6 10 −10 −6 −2 2 6 10

Unprocessed -10 -6 -2 2 6 10 33.7 43.5 55.2 67.1 77.8 86.1
GEVD -1 2.4 6.1 10.6 15.9 21.5 60.4 69.3 77.3 84 89.2 92.6
CoG 5.3 9.3 13.3 17.3 21.3 25.3 71.2 75.2 75.8 80.7 82.1 82.9
ML 3.5 7.5 11.6 15.3 19.6 23.5 73.6 78.6 82.7 85.8 87.9 89.2

TABLE III: SNRout dB and STOI [%] scores for T60 = 600 ms
SNRout [dB] STOI [%]

Alg.\SNRin[dB] −10 −6 −2 2 6 10 −10 −6 −2 2 6 10

Unprocessed -10 -6 -2 2 6 10 38.9 48.9 60.4 71.9 81.7 88.9
GEVD -1.4 2.9 7.6 12.6 17.3 21.9 52.5 62.2 70.6 76.8 80.5 82.5
CoG 6.6 10.7 14.7 18.7 22.7 26.7 64.4 68.4 71 72.7 73.8 74.3
ML 7.2 11.2 15.2 19.3 23.3 27.3 67.5 72.3 75.5 77.7 79.1 79.9

V. CONCLUSIONS

We have presented a robust supervised RTF identification
method in which the manifold of typical RTFs in a particular
room is learned in advance, and then, exploited to improve the
identification of unknown RTFs based on noisy measurements.
The method was tested and trained with real recordings in a
wide range of SNRs and reverberation levels, and has shown to
provide a robust RTF estimation and consequently to improve
the beamformer performances, especially in noisy conditions.

2Available www.eng.biu.ac.il/gannot/speech-enhancement/
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