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Abstract—Recent years have seen a surge in the number of
available frameworks for speech enhancement (SE) and recog-
nition. Whether model-based or constructed via deep learning,
these frameworks often rely in isolation on either time-domain
signals or time-frequency (TF) representations of speech data. In
this study, we investigate the advantages of each set of approaches
by separately examining their impact on speech intelligibility
and quality. Furthermore, we combine the fragmented benefits
of time-domain and TF speech representations by introducing
two new cross-domain SE frameworks. A quantitative compar-
ative analysis against recent model-based and deep learning SE
approaches is performed to illustrate the merit of the proposed
frameworks.

Index Terms—Speech enhancement, generative adversarial
networks, automatic speech recognition, deep learning.

I. INTRODUCTION

Speech enhancement (SE) can be defined as recovering
the desired speech from various unwanted effects, such as
background noise, interference and reverberation. Accordingly,
SE is considered a fundamental building block in many
commonplace tasks such as hearing aids, smartphones and
speech recognition. However, extracting the desired speech can
be challenging in realistic environments where the noise level
and frequency components are similar to the desired speech.

Advances in deep neural networks (DNNs) have led to leaps
in performance in diverse fields such as image processing,
remote sensing and medical applications [1]–[9]. In an effort
to overcome the intrinsic challenges in SE tasks, a large body
of research similarly adopted DNNs. This has led to a surge
in the number of available deep learning (DL) approaches for
SE as indicated by recent studies [10], [11]. These approaches
can be divided into two main categories. The first utilizes the
original time-domain signals while the latter relies on time-
frequency (TF) domain representations.

Chronologically, speech-enhancement generative adversar-
ial networks (SEGAN) is among the first DL frameworks
to adopt raw time-domain waveforms as input [12]–[14].
This framework utilizes two networks (generator and dis-
criminator) trained adversarially with each other. According
to the original comparative results presented in [12], this
framework surpasses the performance of traditional model-
based SE approaches. Also, a non-causal adaptation of the
autoregressive generative Wavenet was introduced in [15].
Rather than adversarial training, this architecture incorporates
residual blocks together with a time-domain L1 loss. Not only
did this framework improve upon the performance of the prior
SEGAN, but also it is easily adaptable to variable-length input
waveforms. On the whole, deeper architectures are necessary
for the aforementioned approaches due to the utilized higher
dimensional input space and the challenging patterns in time-
domain signals.

Conversely, the second category of SE approaches convert
the raw input speech data into their corresponding TF repre-
sentations. This transformation serves to represent the speech
data in a more perceptually oriented manner with pronounced
visual features. Accordingly, the majority of model-based
and DL approaches uphold this data-feeding strategy. Due
to the sequential nature of speech data, usually recurrent
neural networks (RNNs) are suitable for the extraction of
temporal speech features [16]–[20]. Also, convolutional neural
networks (CNNs) were studied for SE by binary masking of
the corresponding TF maps [21]–[23]. Analogous to SEGAN,
adversarial models were also utilized for TF-based SE. For
instance, FSEGAN provided a two-dimensional adaptation
of the SEGAN framework to suit TF inputs [24]. Build-
ing upon FSEGAN, additional adversarial approaches were
introduced to provide further improvements in the resultant
speech quality [25]–[28]. All of the aforementioned research
necessitates the sole utilization of the magnitude component
for SE while ignoring the phase. This will affect the quality of
the reconstructed speech, i.e. how comfortable is the listening
experience. However, this deterioration in the resultant speech
quality does not adversely affect the speech intelligibility [29,
p. 94], which represents the degree of clarity of the speech
content. To this end, a relatively smaller number of studies
attempted dual magnitude and phase correction [30]–[32].
Moreover, the current TF-domain approaches are confined to
input tracks of fixed duration. This hinders the training and
inference efficiency as longer tracks must be divided into short
segments which correspond to higher computational budget.

A new paradigm was recently proposed for SE, which
explores the utilization of both time-domain and TF input
components. In [33], authors introduced two parallel archi-
tectures operating on the time and TF representations with a
joint auxiliary decision at the end. Both architectures employ
a time-domain loss operating on the final combined output.
Few studies attempted penalizing a time-domain framework
with a TF-domain loss [13], [34], [35]. Moreover, some recent
frameworks utilized a binary masking operation to enhance
input TF representations which are then transformed back to
the time-domain [36], [37]. Similarly, a single loss function
is used to penalize the whole framework in the time-domain.
Thus, despite utilizing both domains as input components, the
above frameworks are trained solely using a single-domain
loss function. To the best of our knowledge, no explicit
investigation has been conducted regarding the impact of
simultaneous utilization of cross-domain loss functions for SE.

In this work, we attempt to combine the fragmented benefits
of time and TF-domain SE frameworks. To this end, we em-
pirically investigate the impact of single-domain loss functions
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(a) SEGAN architecure. (b) Wavenet architecure. (c) AeGAN architecure.

Fig. 1. Architecture details of all studied frameworks (SEGAN, Wavenet and AeGAN). The FSEGAN architecture is similar
to the AeGAN with only one generator and no feature-based loss (LFB).

and their cross-domain counterparts. Namely, we incorporate
the time-domain loss component into SE frameworks operating
on TF representations and vice versa. Further, we separately
examine the influence of each loss component on the resultant
speech quality and speech intelligibility. To validate the ad-
vantages of the proposed cross-domain models, a quantitative
comparative analysis between recent SE frameworks and the
proposed cross-domain approaches is presented over different
signal-to-noise-ratios (SNRs).

II. METHOD

In this section, the SE approaches investigated in the
conducted comparative analysis will be briefly introduced.
An overview of these frameworks is represented in Fig. 1.
Moreover, the proposed cross-domain loss functions will be
subsequently presented in details.

A. Time-domain Approaches
SEGAN [12] is a conditional adversarial framework com-

posed of two networks, the generator G and the discriminator
D, as depicted in Fig. 1a. The generator is a one-dimensional
22-layer U-net architecture which receives as input a fixed-
length corrupted time-domain speech signal y(t). It is tasked
with transforming it into a corresponding enhanced output
x̂(t) = G (y(t)). The discriminator network, with identical
architecture as G’s encoder, receives either the ground-truth
clean speech signal x(t) or the generated speech output x̂(t)
together with the corrupted input y(t). It acts as a binary
classifier as it attempts to distinguish which input-pair is real
and which is fake. This motivates G to improve its own
performance by producing more realistic output which fools
D, while conversely D attempts to improve its classification
performance. This adversarial training component is repre-
sented by the following loss function:

min
G

max
D
Ladv = min

G
max
D

Ex(t),y(t) [logD(x(t), y(t))] +

Ex̂(t),y(t) [log (1−D (x̂(t), y(t)))]
(1)

while an additional time-domain loss component is utilized to
further improve the generator training:

LL1,time = Ex(t),x̂(t) [‖x(t)− x̂(t)‖1] (2)
Wavenet [15] is an audio domain adaptation of the autore-

gressive "PixelCNN" generative model for natural images [38].

It is composed of consecutive residual blocks preceded and
followed by a series of one-dimensional convolutional layers.
The residual blocks utilize dilated convolutional layers with
exponentially increasing dilation factors resulting in a growing
receptive field. Due to the sequential nature of time-series
speech data, it is beneficial to capture long-term dependencies
in order to improve the resultant speech quality. For this
purpose, Wavenet employs gated activation units within the
residual blocks, as illustrated in Fig. 1b. Finally, the resultant
enhanced speech signal is penalized by an L1 loss, identical
to that in Eq. 2. A particular advantage of this approach is the
capability of accommodating variable-length inputs, whereas
SEGANs are restricted to fixed-length data as they employ an
encoder-decoder generator architecture.

B. Time-Frequency Approaches
FSEGAN [24] is a two-dimensional adaptation of the

SEGAN framework. It follows the same design principles
of conditional adversarial networks with a generator G (16-
layered U-net architecture) and a discriminator D trained si-
multaneously in competition with each other. In this approach,
the inputs to the generator are TF-magnitude representations
calculated by applying a short-time Fourier transform (STFT)
on the raw speech data. Compared to prior time-domain
approaches, the advantages of this framework are twofold.
First, the TF-magnitude component is a visual interpretation
of human speech phonetics. This assists in enhancing the
performance of DL-related SE approaches, as reported in [24].
Further, this TF embedding reduces the required computational
resources due to the efficient two-dimensional convolutional
layers. For training this network, a similar adversarial loss
function to that defined in Eq. 1 is utilized albeit with the
TF-magnitude representations ym, xm and x̂m representing
the corrupted inputs, clean targets and predicted outputs,
respectively. To further enhance the quality of the resultant TF
representations, an additional L1 loss is used to penalize the
pixel-wise discrepancies between the outputs x̂m and targets
xm as expressed by:

LL1,TF = Exm,x̂m [‖xm − x̂m‖1] (3)

AeGAN [28] is an improved architecture which extends
FSEGAN by introducing an additional non-adversarial feature-
based loss function together with an enhanced generator

412



(a) CD-AeGAN architecture and losses. (b) CD-Wavenet architecture and losses.

Fig. 2. SE cross-domain architectures with their respective losses. The weights given to cross-domain losses are chosen to
reflect equal importance and thus penalization in both domains. All STFT blocks utilize dynamic time resolution technique
[28], to embed all training tracks into 256 × 256 TF representations.

consisting of an end-to-end concatenation of three U-nets
(CasNet), as shown in Fig. 1c. Moreover, the feature-based
loss function (LFB) exploits the visual patterns in the input TF
representations to produce globally consistent results. This is
achieved by utilizing the discriminator as a trainable feature-
extractor network and penalizing the discrepancies between
the extracted feature-maps of the outputs x̂m and their ground-
truth counterparts xm. This loss is defined as:

LFB =

K∑
k=1

λk‖Dk (xm)−Dk (x̂m)‖1 (4)

with Dk representing the extracted feature-map from the kth
layer of the discriminator. K and λk are the number of layers
and the individual weights given to each layer, respectively.

C. Cross-domain Loss Functions

In this study, we attempt to combine the benefits of both
time-domain and TF-based SE approaches. To achieve this, we
utilize from the prior two families of approaches the Wavenet
and AeGAN as baselines and expand them with additional
cross-domain loss functions, as illustrated in Fig. 2. Below
are the two resultant frameworks:
• Time → TF loss: The first framework, referred to as
cross-domain Wavenet (CD-Wavenet), is an extension of the
original Wavenet architecture. It implements an STFT on both
the enhanced and target speech signals. The resultant TF-
magnitude components are penalized using the cross-domain
loss function LL1,TF, presented previously in Eq. 3. Since the
TF-magnitude is a direct representation of speech phonetics,
we hypothesize that additionally penalizing signals in the TF-
domain will help to preserve the perceptual speech features,
thus, enhancing the speech intelligibility with no adverse effect
on the resultant quality.
• TF → Time loss: Cross-domain AeGAN (CD-AeGAN)
is the second investigated framework. It reverts back to the
original time-domain waveforms via an inverse short-time
Fourier transform (ISTFT) operation applied to the output
and target TF-magnitude representations, together with the
input noisy phase yp. Discrepancies in the resultant time-series
are then penalized using the aforementioned LL1,time loss in
Eq. 2. This guides the generator network to produce speech
tracks that not only matches the perceptual features in the

TF-domain, but also the audible aspects of the original time-
domain resulting in enhanced speech quality. The claim that
time-domain loss inherits phase information, and thus directly
impacts the speech quality, whereas speech intelligibility is
rather affected by TF-magnitude is consistent with previous
studies [39], [40].

III. DATASETS AND EXPERIMENTS

To investigate the impact of cross-domain loss functions
in SE, we conduct a comparative study using the Voice
Bank corpus dataset [41] as the ground-truth reference tracks.
Additive noise from the DEMAND and QUT-TIMIT datasets
[42], [43] were used to create the corrupted speech input tracks
according to the following signal-to-noise ratios (SNRs): 0
and 5 dB. For training the different networks, data from 30
speakers (175 sentences) corrupted with 12 noise conditions
were utilized (total of 49,510 tracks). As for the testing dataset,
it consists of 20 new speakers reading 50 new sentences with
7 different noise conditions (1,000 tracks per SNR value). All
input speech tracks are sampled at 16 kHz.

We quantitatively examine the performance of the above-
described DL approaches together with two model-based ap-
proaches: the Wiener filter [44] as a baseline and a recent
Bayesian MMSE technique introduced in 2018 [45]. The
SEGAN framework was trained on fixed one-second duration
tracks, whereas the Wavenet utilized variable-length tracks.
The TF-domain approaches were extended to incorporate the
dynamic time resolution technique presented in [28]. This
serves to embed tracks of variable duration into TF-magnitude
embeddings of a fixed 256 × 256 dimensionality. To ensure
a fair comparison, all trainable models were trained for 50
epochs using the architectures and hyper-parameter settings
recommended in their respective original publications.

To investigate both the resultant speech quality and intelligi-
bility, multiple metrics were used in the comparative analysis.
For speech quality assessment, the segmental SNR (SSNR)
[46], the perceptual evaluation of speech quality (PESQ) [47],
the mean opinion score (MOS) predictions of the signal
distortion (CSIG), background noise (CBAK) and the overall
condition (COVL) [48] are utilized. With regards to human
speech intelligibility, we evaluate the word error rate (WER)
of a pre-trained Deep Speech model [49] as well as the short-
time objective intelligibility measure (STOI) [50].
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TABLE I. Quantitative comparison of different approaches on
the test set. Bold font indicates the best scores. The metric (1-
WER) is utilized to represent improvements in the resultant
intelligibility score (higher is better).

Model
(a) SNR 0 dB

PESQ CSIG CBAK COVL SSNR STOI 1-WER
[dB] [%] [%]

Wiener 1.83 1.35 2.04 1.49 -0.52 63.1 12.2
Bayesian 2.05 1.84 1.86 1.75 -0.37 64.2 20.4
SEGAN 2.16 2.47 2.18 2.20 0.24 67.8 28.5
Wavenet 2.34 3.33 2.59 2.78 2.44 69.2 51.2

CD-Wavenet 2.43 2.98 2.62 2.64 2.74 69.7 58.6
FSEGAN 2.33 3.26 2.50 2.75 0.59 68.2 46.9

AeGAN 2.48 3.57 2.68 2.99 1.59 69.9 54.2
CD-AeGAN 2.53 3.61 2.70 3.06 3.03 70.2 56.6

Model
(b) SNR 5 dB

PESQ CSIG CBAK COVL SSNR STOI 1-WER
[dB] [%] [%]

Wiener 2.20 1.85 2.38 1.95 1.23 72.2 35.9
Bayesian 2.38 2.32 2.23 2.19 1.82 73.1 37.6
SEGAN 2.50 2.83 2.52 2.56 2.05 74.5 47.5
Wavenet 2.73 3.74 2.91 3.19 4.03 75.9 62.8

CD-Wavenet 2.77 3.49 2.96 3.09 4.73 76.7 70.9
FSEGAN 2.68 3.68 2.83 3.16 2.32 75.7 64.8

AeGAN 2.87 3.91 3.03 3.37 3.64 79.2 68.9
CD-AeGAN 2.92 3.93 3.10 3.40 4.87 79.6 70.1

IV. RESULTS AND DISCUSSION

Table I and Fig. 3 present the quantitative evaluations of the
proposed cross-domain SE frameworks in comparison to ap-
proaches utilizing single-domain losses. Additionally, compar-
isons were carried out against other model-based approaches
and DL-based time-domain and TF-domain approaches. The
recent Bayesian MMSE model-based approach achieves com-
parable performance to the SEGAN framework with respect
to both the speech quality and intelligibility metrics. The
AeGAN framework achieves a significant enhancement of the
resultant speech tracks compared to the FSEGAN framework
as reflected across all metric scores. This is attributed to the
incorporation of the cascaded generator network architecture
as well as the feature-based loss function. For instance, at SNR
0 dB improvements from 46.9% to 54.2% and from 2.33 to
2.48 were observed for the WER and PESQ, respectively. With
regards to time-domain SE approaches, the Wavenet frame-
work introduces the capability of enhancing speech tracks
of variable-lengths. Despite of this, it outperforms the prior
SEGAN framework which deals with fixed-length input tracks.

To investigate the impact of cross-domain loss functions
in SE, the highest performing networks from both the time
and TF-based family of DL techniques were singled out.
Namely, the AeGAN and Wavenet frameworks. These ap-
proaches were then expanded upon by cross-domain loss
functions and compared to their unaltered counterparts. In
CD-AeGAN, the output TF-magnitude representations from
AeGAN are transformed back to the time-domain before being
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Fig. 3. Boxplots of cross-domain models in comparison to
their original counterparts over both SNRs (0, 5 dB). The
SSNR (left) represents the speech quality. The WER (right)
represents the speech intelligibility. The quantity (1-WER) can
be negative as in these cases, the accumulated errors exceed
the number of words in the reference sentence.

additionally penalized by an L1 loss function. This translates
into an improvement of the SSNR score compared to AeGAN
by approximately 1.44 and 1.23 dB for SNR 0 and 5 dB,
respectively. Also, an enhancement of the PESQ score is
observed with a slight improvement in the CSIG, CBAK and
COVL. Furthermore, a marginal or no improvement in the
speech intelligibility metrics, represented by WER and STOI,
is perceived. The second investigated cross-domain approach
expands upon the conventional Wavenet framework with an
additional pixel-wise loss in the TF-magnitude. In contrast
to CD-AeGAN, penalizing the TF-magnitude representations
noticeably enhances the speech intelligibility of the resultant
tracks. Specifically, the WER was improved by approximately
8% for both SNR values. Conversely, marginal improvement
can be observed to the speech quality metrics. On the whole,
the CD-AeGAN outperforms the CD-Wavenet in most of the
metrics except for the WER where the CD-Wavenet achieves
the best score. This agrees with recent literature hypothesizing
that penalizing the time domain after the enhancement of TF
representations is beneficial to the overall quality metrics [37].

The above results indicate that time-domain and TF-based
loss components have distinct strengths. Specifically, penal-
izing the speech data in the TF-domain positively influences
the resultant speech intelligibility, whereas time-domain loss
functions directly impact the speech quality. From another
perspective, time-domain approaches benefit from implicitly
enhancing the speech phase component which positively im-
pacts the quality metrics, whereas TF-based approaches exploit
the perceptual features in the magnitude representations, thus,
enhancing the ineligibility of the speech tracks. Consequently,
cross-domain SE approaches would assist in bridging the gap
between the distinct advantages of single-domain frameworks.

V. CONCLUSION

In this work, we present an investigative study regarding the
impact of simultaneously enhancing speech signals in both
time and TF domains in comparison to single-domain ap-
proaches. To achieve this, we expand the conventional Wavenet
and AeGAN frameworks with corresponding cross-domain
loss functions. Quantitative evaluations have illustrated that
penalizing time-domain losses directly influence the resultant

414



speech quality. In contrast, TF-based loss functions impact
the intelligibility of the output speech. In the future, this may
lead to the development of tailored architectures to resolve
the drawbacks of single-domain frameworks. For instance, this
could combine the benefit of time-domain approaches with
respect to implicitly enhancing the phase component while
concurrently exploiting the perceptual information in the TF-
magnitude representations.
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