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Abstract—Deep neural network (DNN)-based speech enhance-
ment ordinarily requires clean speech signals as the training
target. However, collecting clean signals is very costly because
they must be recorded in a studio. This requirement currently
restricts the amount of training data for speech enhancement
to less than 1/1000 of that of speech recognition which does
not need clean signals. Increasing the amount of training data
is important for improving the performance, and hence the
requirement of clean signals should be relaxed. In this paper, we
propose a training strategy that does not require clean signals.
The proposed method only utilizes noisy signals for training,
which enables us to use a variety of speech signals in the wild.
Our experimental results showed that the proposed method can
achieve the performance similar to that of a DNN trained with
clean signals.

Index Terms—Single-channel speech enhancement, deep neural
network (DNN), training target, Noise2Noise.

I. INTRODUCTION

Speech enhancement is utilized for recovering target speech
from a noisy observed signal [1]. It is a fundamental task
with a wide range of applications, including automatic speech
recognition (ASR) [2]. Over the last decade, a rapid progress
has been made by using supervised training of deep neural
networks (DNN) [2]-[4]. A DNN is trained so that it pre-
dicts the target speech from an input noisy observation. In
the training, the training target is clean speech, and the input
signal is simulated by using clean speech and noise as shown
in Fig. 1(a). In this paper, we refer to this standard training
strategy as Clean-target Training (CTT).

Although Clean-target Training is clearly a proper strategy,
it has two potential problems. First, collecting studio-recorded
signals is very costly and time-consuming. Unlike image,
speech signals are easily contaminated due to the surrounded
environment. Thus, “clean” signals can only be acquired under
well-controlled conditions in a studio. Such difficulty prohibits
collecting a huge amount of data for training. In fact, a typical
dataset in speech enhancement contains only 12 thousand
utterances [5], whereas training of an ASR system may utilize
over 35 million utterances [6] because ASR does not require
clean speech as the target. Second, providing enough variations
of the recording condition for the training is hopeless. The
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(a) Clean-target Training (b) Noise-target Training (c) Noisy-target Training

Fig. 1. Overview of (a) Clean-target Training, (b) Noise-target Training,
and (c) Noisy-target Training (porposed method). The proposed Noisy-target
Training does not use any clean speech during training, in contrast to
conventional Clean-target and Noise-target Training.

real-world observations vary with multiple factors, including
recording equipment, mouth-microphone distance, and the
Lombard effect. Simulating all of these factors in a studio
to obtain a variety of clean signals is impossible. Hence,
the training dataset and real-world data have mismatches that
can degrade the performance of speech enhancement, e.g., a
training dataset is recorded with a studio (large-diaphragm
condenser) microphone, while a real-world signal is recorded
with a (low-priced MEMS) microphone implemented in a
smartphone. Because of these reasons, using clean speech
signals as the training target can be an essential limitation.
To overcome such limitation, some research has attempted
to train a DNN without the clean target [7], [8]. An inter-
esting strategy aiming at this goal is Noise-target Training
(NeTT) as shown in Fig. 1(b). Its training target is mixture
of speech and noise, and the input signal is simulated
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by using the same clean speech and some other noise. This
training strategy was originally proposed in image processing
by the name Noise2Noise [9], and was later applied to speech
enhancement [8]. In Noise2Noise, pairs of noisy signals that
consist of different noises and exactly the same clean target
are utilized for training. Since the contained clean signal is
the same, the trained DNN tries to map the noise in an input
signal to another noise. Assuming that the noise distribution is
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zero-mean, the trained DNN becomes a noise suppressor [9].
By Noise2Noise training, the requirement of a clean target can
be avoided for image applications because photos of exactly
the same target with different noise can be easily obtained by a
camera with multiple exposures. However, it is not applicable
to audio applications because it is impossible to observe
multiple noisy signals with exactly the same speech signal.
Therefore, the previous research has utilized clean speech to
simulate a pair of noisy signals [8] as in Fig. 1(b), which
inherits the limitation of Clean-target Training.

In this paper, we propose Noisy-target Training (NyTT) as
in Fig. 1 (c). Its training target is noisy speech, and the input
signal is simulated by using_the same noisy speech and noise.
In other words, a DNN is trained to predict a noisy speech
signal from a more noisy signal. Although this strategy might
sound inappropriate, it can achieve results similar to those
obtained by Clean-target Training when there is a mismatch
between training and testing datasets. Our contributions are as
follows: (1) proposing a new training strategy, (2) examining
several training conditions by extensive experiment, and (3)
analyzing the experimental results.

II. RELATED WORKS

Let T-point-long time-domain observation & € R” be a
mixture of a target speech s and observation noise 1n(°"%) as
x = s+n(°") The goal of speech enhancement is to recover
s only from . Over the last decade, application of DNN to
speech enhancement has substantially advanced the state-of-
the art performance [1]-[4].

A popular method is to utilize a DNN for estimating a
time-frequency (T-F) mask in the short-time Fourier transform
(STFT)-domain [1]. Let F : RT — C¥*X denote STFT,
where F' and K are the numbers of frequency and time bins,
respectively. Then, DNN-based speech enhancement can be
written as

5§=F" M(z;0) © F (x)), ¢))

where § is the estimate of s, FT is the inverse STFT, @ is
the element-wise product, M is a DNN for estimating a T-F
mask, and 6 is the set of its parameters. Obviously, the quality
of output signals is determined by the parameters of DNN.

In this study, we focus on the training strategy for the DNN,
M(+;0). The conventional training strategies (CTT and NeTT)
are explained in this section, whereas the proposed training
strategy (NyTT) will be introduced in Section III.

A. Clean-target Training (CTT)

Most of the literature of DNN-based speech enhancement
is based on Clean-target Training [1], which utilizes the clean
speech signals as the training target. It minimizes the following
prediction error between the estimated signal § and the clean
target s,

M
cerr— L > D(8m 5m) )
- M msym)
m=1

where M is the minibatch-size, and D is a function that
measures the difference between the input variables, such as

the /5 distance D(a, b) = ||a—b||3. Since &, is predicted from
mth noisy observation x,, as in Eq. (1), Clean-target Training
requires pairs of noisy and clean signals (&, S,,) as training
data. These training data are simulated by mixing clean speech
signals and noise that are collected independently. This is
because recording such paired signals in the real environment
is not feasible.

Clean-target Training has an essential limitation due to
the requirement of clean speech signals. In the real use
cases, recording conditions have extreme variation caused by
recording equipment, mouth-microphone angle and distance,
surrounding environments, and several other factors. Covering
all possible recording conditions by studio-recorded speech
signals is impossible because clean signals can only be ac-
quired in the well-controlled environment in a studio. This
fact limits the amount and variation of the training data, which
may degrade the performance of speech enhancement.

B. Noise-target Training (NeTT)

Another training strategy, which was originally proposed
for image processing [9], is Noise-target Training [8]. It
trains a DNN to predict a noisy signal from another noisy
signal as follows. Noise-target Training considers two different
noises nY) and n® for a clean target s. Then, two kinds
of observations can be obtained as ) = s + n(!) and
() = s+n?), which form a pair of noisy signals (x(!), x(?)).
Using such noisy-noisy pairs (wg),mgz)), a DNN is trained
to minimize the following prediction error between the output
signal (1) estimated from (") and x(?,

M
1
LY = 2> D) =), (3)

m
m=1
Since random noise cannot be predicted by a DNN, the random
components contained in the training data are mapped to their
expected values. Therefore, by assuming the noise as zero-
mean random variable, this training strategy yields a DNN
that eliminates the noise.

Although Noise-target Training is useful for image process-
ing [9], it must inherit the limitation of Clean-target Training
for speech enhancement. For image applications, the above
noisy-noisy pairs (contaminated by shot noise and thermal
noise) can be easily obtained by a camera with short exposures.
In contrast, for audio applications, it is impossible to observe
multiple noisy signals with exactly the same speech because
audio signals are time- and space-variant. Hence, we must
use the clean speech signals to simulate the noisy-noisy pairs,
which limits the variation of the training data.

III. PROPOSED METHOD

The success of Noise-target Training has suggested a pos-
sibility of training a DNN without clean signals. However, it
is not in a suitable form for audio applications as discussed
above. In this study, we investigate another possibility of
training without clean signals, Noisy-target Training, that is
suitable for speech enhancement.
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A. Noisy-target Training (NyTT)

The above Noise-target Training has revealed two facts: (1)
clean signals are not mandatory for training, and (2) noisy
signals can be utilized instead. By interpreting them in the
broadest sense, we propose Noisy-target Training as follows.

In the proposed training strategy, we only require noisy
signal = and noise m, i.e., clean signals are not utilized. By
mixing them, a more noisy signal y is synthesized as follows:

y=z+mn “4)

This forms a pair of more noisy and noisy signals (y, z). By
inputting the more noisy signal y into the DNN as

§=F (M(y;0) 0 F(y)), (5)

the proposed method trains the DNN by minimizing the
following prediction error between x and the enhanced more
noisy signal 3,

M
LT = % mzl D(8m Tim).- (6)
Therefore, the proposed method realizes training similar to
Eq. (3) without using any clean signal.

Since & = s+n(°P%) the proposed method can be viewed as
Noise-target Training in Section II-B with (1) = s4n(°>5)4n
and (® = s 4+ n(°®) Hence, the validity of the proposed
method depends on the statistics of 1n(°"®) + n and n(°b%)
utilized during the training. Since we suppose that both
n(°P%) and n are given by real-world recordings, theoretical
validation cannot be made for the proposed method. Even so,
our experiments in the next section confirmed its effectiveness
for speech enhancement.

IV. EXPERIMENTS

We conducted three types of experiments to investigate the
performance of the proposed method (NyTT):

Proof of concept: We investigated whether NyTT can train
the DNN without clean speech. We evaluated the perfor-
mance on both seen and unseen datasets, i.e., w/ and w/o
mismatch between training and testing data.

Effects of SNR of noisy target: We investigated the perfor-
mance of NyTT in response to the SNR of noisy target.

Effects of types of additional noise: We investigated the
performance of NyTT in response to the relationship
between 1n(°">) and n by using four types of additional
noise datasets.

A. Experimental setups

Datasets: TableI shows datasets used in experiments. We
utilized the VoiceBank-DEMAND [5] which is openly avail-
able and frequently used in the literature of DNN-based speech
enhancement [3], [4]. The train and test sets consists of 28
and 2 speakers (11572 and 824 utterances), respectively. In
addition to this dataset, to evaluate the performance under a
training/testing data mismatched condition, we constructed a
test dataset by mixing TIMIT [10] (speech) and TAU Urban

TABLE I
LIST OF TRAINING/TESTING DATASETS. Libri-Task1 aND CHIMES
INCLUDE ONLY PRE-MIXED (NOISY) SIGNALS, WHICH IMITATES THE
SITUATION THAT ONLY NOISY SPEECH SIGNALS & ARE AVAILABLE.

Name ‘ Clean s Noise n(°b®)
VoiceBank-DEMAND [5] | VoiceBank [12] DEMAND [13]
TIMIT-MOBILE TIMIT [10] TAU-2019 [11]
Libri-Task1 Libri-TTS [14] + TAU-2020 [15]
CHIMES Only noisy signal provided

Acoustic Scenes 2019 Mobile [11] (noise) as TIMIT-MOBILE
at signal-to-noise ratio (SNR) randomly selected from —5, 0,
5, and 10 dB. The test sets consist of 1680 utterances spoken
by 168 speakers (112 males and 56 females).

To mimic the use of noisy signals for training in NyTT, we

additionally used Libri-Task1 and CHIMES5 as noisy datasets.
Libri-Task1 consists of mixed signals of the development
sets of LibriTTS [14] and TAU Urban Acoustic Scenes 2020
Mobile [15] (TAU-2020) whose SNR was randomly selected
from 0, 5, 10, and 15 dB. This dataset includes 8.97 hours of
noisy speech with 5736 utterances. CHIMES was the training
dataset of the 5th CHiME Speech Separation and Recognition
Challenge [16], and consisted of 77.24 hours of noisy speech
with 79967 utterances which was created by cutting each
speech interval in the continuous training data with before/after
0.5 sec margin. In addition, we used background noise of
CHIME3 [17] as noise dataset (CHiME3).
Comparison methods and metrics: In order to investigate
whether NyTT can solve the recording condition mismatch
problem by utilizing a larger amount of noisy target, we
evaluated the following two versions of NyTT. These methods
were compared with CTT and NeTT [8].

As the metrics, we used CSIG, CBAK, COVL [18], PESQ,
and scale-invariant signal-to-distortion ratio (SI-SDR). The
first four metrics are the standard metrics used in VoiceBank-
DEMAND, and SI-SDR is a metrics widely used for evaluation
of speech enhancement.

Training details: For NyTT and NyTT (L), we randomly
selected an additional noise m from DEMAND, TAU-2020,
and CHiME3, and mixed to noisy speech « at randomly
selected SNRs between —5 to 5 dB, where SNR is measured
by considering x as the signal and n as noise. For CTT, to
use the same variety of noise samples as NyTT, we augmented
the noisy dataset by randomly swapping the noise in noisy
signals to a noise in DEMAND, TAU-2020, and CHiME3. In
the same sense, we used DEMAND, TAU-2020, and CHiME3
as noise dataset for NeTT. Therefore, the amount and variety
of training noise samples were the same for all methods, and
only the type and amount of the target signals were different.

The DNN estimated a complex-valued T-F mask, and con-
sisted of a CNN-BLSTM which has the same architecture of
[4]. The input of the DNN was log-amplitude spectrogram of
the input signal. The spectrogram of the input was multiplied
by the estimated complex T-F mask and transformed back to
the time-domain, where the STFT parameters, frame shift and
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TABLE II
RESULTS ON VoiceBank-DEMAND (NO MISMATCH OF TRAINING AND
TESTING DATASETS). INPUT MEANS THE SCORES OF INPUT SIGNALS.

Method | SI-SDR PESQ CSIG CBAK COVL

Input 9.21 1.97 3.35 2.44 2.63

CTT 19.53 2.68 3.83 3.37 3.25

NeTT 19.50 2.63 3.77 3.34 3.19

NyTT 17.66 2.30 3.19 3.01 2.72

NyTT (L) 17.72 231 3.23 3.02 2.75
TABLE III

RESULTS ON TIMIT-MOBILE (WITH MISMATCH OF TRAINING AND
TESTING DATASETS). INPUT MEANS THE SCORES OF INPUT SIGNALS.

Method | SI-SDR PESQ CSIG CBAK COVL
Input 4.69 1.30 2.73 1.75 1.94
CTT 12.60 2.02 3.22 271 2.58
NeTT 12.26 1.99 3.13 2.67 2.52
NyTT 12.09 1.95 3.41 2.61 2.64
NyTT (L) 12.38 1.91 3.43 2.58 2.63

window size (= DFT size), were set to 128- and 512-samples,
respectively, with the Hamming window.

We used mean-squared-error (MSE) as D(a,b) = 7|a —
b||3 and Adam optimizer with a fixed learning rate 0.0001.We
separated the training dataset into randomly selected 50 and
other utterances, and used as validation and development
datasets, respectively. We trained DNNs 500 epochs with
batchsize 50, and finally used the model with the best vali-
dation SI-SDR. In CTT and NeTT, noise n was added to s at
SNR randomly selected from —5, 0, 5, and 10 dB.

B. Proof of concept

For the proof of concept, we conducted two experiments.
First, we conducted an experiment for verifying whether NyTT
can train the DNN without clean speech signals. To remove
the effect of training/testing data mismatch effect, we used the
test dataset of VoiceBank-DEMAND for evaluating scores.
Table II summarizes the evaluated scores, where NyTT and
NyTT (L) achieved higher scores than that of the input signal
(Noisy). This result indicates that Noisy-target Training can
train a DNN without clean speech.

Next, we evaluated each method on TIMIT-MOBILE to con-
firm whether NyTT robustly worked on unseen test data. Here,
there is a mismatch between recording conditions of training
and testing datasets. Table III summarizes the evaluated scores.
While CTT and NeTT performed better than NyTT in the
VoiceBank-DEMAND results (no mismatch between testing
and trainig datasets), the performance of all methods was
similar in the results on TIMIT-MOBILE (having mismatch
between training and testing datasets). Even though NyTT did
not use any clean speech in training, it achieved results similar
to those obtained by CTT and NeTT which used clean speech
in training. This result might indicate that training using clean
speech can overfit to the signals in the training dataset. The
proposed NyTT has potential to avoid such overfitting by using
a huge amount of noisy data which can be easily acquired.

[l:l CTT B NyTT (L)]

SI-SDR improvement PESQ improvement

-10

Fig. 2. Comparison of SI-SDR/PESQ improvements between CTT and
NvTT (L) on TIMIT-MOBILE (having mismatch with training data).

101

SI-SDR improvement

-5 0 5 10 15 20 00
SNR of noisy target [dB]

Fig. 3. Relationship between SNR of noisy signal @ utilized in NyTT and
its SI-SDR improvement. SNR oo dB is equivalent to CTT.

Fig. 2 shows SI-SDR/PESQ improvements of CTT and
NyTT (L) corresponding to Table III. The median of both
training methods was almost the same, whereas the variance
of NyTT was smaller than that of CTT. This suggests that
NyTT has stable performance even when there is a mismatch
between training and testing datasets.

C. Effects of SNR of noisy target signal in NyTT

Since NyTT becomes CTT when SNR of the noisy target
signal x is oo (i.e., x is clean), we investigated the relationship
between SNR of noisy target and the performance of NyTT.
We modified VoiceBank-DEMAND so that all noisy targets’
SNR became —5, 0, 5, 10, 15 and 20 dB. The additional noise
n was taken from DEMAND. To remove the training/testing
data mismatch effect, we used the test dataset of VoiceBank-
DEMAND for evaluation.

Fig. 3 shows SI-SDR improvements for each SNR. As
in the figure, when SNR of the noisy target  was greater
than 5 dB, the performance increased as the SNR of x
increased. Meanwhile, there was almost no difference in SI-
SDR improvement for —5 and 0 dB SNR conditions. This
might be because when the power of n(°"® is equal to or
greater than that of s, a DNN is trained to predict not only
s but also n(°"®) by removing only additional noise n. In
contrast, when SNR of noisy target @ was 15 and 20 dB,
the performance was almost the same as CTT. These results
suggest that (1) SNR of the noisy target « should be greater
than 0 dB for NyTT to be work, and (2) noisy speech signals
with SNR greater than or equal to 15 dB can serve as “clean”
signals for training in speech enhancement.

D. Effects of types of additional noise used in NyTT

Since NyTT utilized noisy signals = s + n(°") with
additional noise m, we investigated the relation of the types
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TABLE IV
COMPARISON ON TYPE OF ADDITIONAL NOISE 2 IN NYTT.

| Input DEMAND TAU-2020 CHIiME3 Task2
SI-SDR | 8.47 12.09 12.00 11.99 9.63
PESQ 1.44 1.74 1.83 1.95 1.52

[ DEMAND () ® DEMAND(a) ® Taskl e CHIME3 e TaskZ]

e

23 XY

oy -

50 N

Fig. 4. Visualization of distribution of n and n(°Ps) using t-SNE. DE-
MAND(n) denotes n(°b%) and the others are n in Table IV.

of noise used for n(°?®) and m. For the noisy signals x,
VoiceBank-DEMAND was utilized as in the previous experi-
ments, 1i.€., n(bs) is from DEMAND. For the additional noise
n, we utilized one of the following four datasets: DEMAND,
TAU-2020, CHiMES3, and the training dataset of DCASE2016
Challenge Task 2 (Task2) [19]. These four noise datasets can
be classifies into two: the first three datasets include various
environmental noise, while Task2 includes only monophonic
sound events that would occur in an office. For the testing
dataset, TIMIT-NOISEX-92 was utilized to avoid using TAU-
2019 which is similar to TAU-2020. It was generated by
mixing TIMIT (speech) and NOISEX-92 [20] (noise) at SNR
randomly selected from 0, 5, 10, and 15 dB. Note that the type
of noise in NOISEX-92 is different from all four datasets used
for the additional noise n.

Table IV shows SI-SDR and PESQ of NyTT using one
of the four datasets for n. NyTT using DEMAND, TAU-
2020, CHiME3 achieved similar scores, whereas NyTT with
Task2 failed to enhance the signal (the scores of Input and
Task2 were almost the same). This should be because Task2
contains a very different type of noise as mentioned in the
previous paragraph. To confirm it, we visualized distribution
of the datasets as shown in Fig. 4. This figure was obtained as
follows. First, we randomly selected 1000 samples from each
training dataset and extracted the first 2 sec to align the length
of data. Second, we calculated the acoustic feature of each
sample using VGGish [21]. Finally, the calculated features
were illustrated as a 2D map by t-Distributed Stochastic
Neighbor Embedding (t-SNE) [22]. From the figure, it can be
seen that DEMAND, TAU-2020 and CHiME3 are similarly
distributed, but Task2 has almost no overlap with them. This
result suggests that NyTT can successfully train a DNN when
the distribution of additional noise n can hide in the distri-
bution of 7(°"*), This should be because the different type
of noise n (as Task2 in this experiment) can be distinguished
from the noisy signals & = s 4+ n(°®), which enables a DNN
to eliminate only the additional noise . while keeping n(°P%).

V. CONCLUSIONS

In this study, for DNN-based speech enhancement, we
proposed a training strategy that does not require clean signals.
We utilized noisy signals as the target and trained a DNN to
predict them from the more noisy signals (Section III-A). Our
experiments showed that the proposed method (1) was able to
train a DNN without clean speech signals, (2) achieved the
results similar to those obtained by using clean signals as the
target when the training and testing datasets have a mismatch,
and (3) revealed the borderline (15 dB) where a signal can be
treated as clean in the training. Future work includes evaluation
using a larger dataset and theoretical validation.
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