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Abstract—We introduce a novel way to incorporate prior infor-
mation into (semi-) supervised non-negative matrix factorization,
which we call differentiable dictionary search. It enables general,
highly flexible and principled modelling of mixtures where non-
linear sources are linearly mixed. We study its behavior on
an audio decomposition task, and conduct an extensive, highly
controlled study of its modelling capabilities.

Index Terms—non-negative matrix factorization, normalizing
flows

I. INTRODUCTION

Non-negative matrix factorization (NMF) [1] can be used
to decompose a spectrogram S of an audio mixture into
a spectral representation of its individual sources [2]. In
its unsupervised form, NMF simultaneously tries to learn a
representation of the individual sources, a dictionary W, as
well as the points in time at which those sources can be heard
— their activity over time H, such that S ≈ WH. This
decomposition succeeds if one crucial assumption about the
audio mixture is met: all the individual sound sources that are
mixed together can also be heard in isolation for at least some
amount of time. If this assumption is not true, NMF will not
be able to separate sound sources that only appear together [3].
To still achieve a useful decomposition in such cases, some
prior information about the individual sound sources needs
to be incorporated, for example as structural constraints on
the dictionary of sources, the vectors in W that describe the
spectral representation of the sound sources. This approach is
called supervised or semi-supervised NMF [4] or alternatively
task-driven dictionary learning [5]. For this to work we need
to have access to recordings of individual sound sources, and
assume that similar sound sources will be present in the audio
recording that we try to decompose.

As there are multiple ways to introduce prior knowledge and
constraints, if given a choice, we would strongly prefer one
that has the following desirable properties: it fully captures the
distribution over the spectral representation of sound sources,
meaning it has high modelling capacity; it is capable of
modelling the underlying data generating process to some
extent, and hence flexible enough to extrapolate to unseen
data; it fits well into the existing NMF framework, meaning
that sound sources can conveniently be added or removed from
the dictionary W.

The approach we are proposing has all of these desirable
properties. Before we go on and discuss them in detail, we

briefly review two much more basic ways of inferring the
necessary prior information from an appropriate, additional
dataset. One simple way to learn about the dictionary elements
a priori, is to compute the mean spectral representation of
individual sound sources. This is done by averaging over the
individual frames of the spectrogram obtained from sources.
Sometimes, one can already obtain reasonable decompositions
with this straightforward technique. Another approach is to
incorporate all the individual spectrogram frames for a sound
source directly into an overcomplete dictionary. One can then
take the sum of activations of these bases as an indicator for
the presence of the sound source at a particular point in time,
at the cost of additional computation.

Both of these methods have shortcomings. Simple averaging
over example frames is too simplistic in most cases, and cannot
adequately model realistic, high dimensional distributions.
Working with overcomplete dictionaries becomes cumbersome
quickly, due to both runtime and memory complexities of
the decomposition, which directly depend on the number of
dictionary entries — the dictionary can not grow indefinitely
in general. Both methods are still linear and have difficulties
generalizing to unseen data.

II. PROPOSED METHOD

We propose a novel, flexible and principled way to in-
corporate prior information about the spectral characteristics
of individual sound sources into the non-negative matrix
factorization framework. As in supervised NMF, we assume
we have access to recordings of individual sound sources that
are sufficiently similar to the ones that will appear in the actual
signals we want to decompose. For each of these sources, we
train a normalizing flow [6] that is capable of modelling the
density of the spectrogram frames of this source. Instead of
a fixed vector or a set of fixed vectors, to describe a sound
source, we now have a parametrized density estimator, a kind
of differentiable dictionary at our disposal. At decomposition
time, we use a collection of these differentiable dictionaries to
search for a mixture of spectral representations of the sound
sources that simultaneously minimizes reconstruction error on
the mixture, while staying likely with respect to the density of
the spectrogram frames of the individual sound sources.

This approach enables us to decompose an input audio
mixture into linear combinations of sound sources that are
best described by nonlinear processes. One scenario with
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Fig. 1. A simplified two dimensional sketch to illustrate nonlinear extrapo-
lation enabled by normalizing flows.

these characteristics is the decomposition of piano recordings
into individual notes. The mixing process in a piano is pre-
dominantly linear [7], whereas the sound generating physical
process is not [8]. We will use this scenario as our testbed to
characterise the modelling capacity of the method.

A. Nonlinear Extrapolation

We will illustrate the difference between linear interpolation
with an overcomplete dictionary and nonlinear extrapolation
utilizing normalizing flows with the help of the sketch shown
in Figure 1. Please note that this is a severely simplified
example in two dimensions only, to visually support the
description. The blue dots represent single feature vectors wk

i

from the training set that describe a particular sound source
with index k, with Wk denoting the sub-matrix of the full
dictionary W that contains only these feature vectors. Due to
the non-negativity constraints of NMF, these vectors form a
cone C = {c|c = Wkhk,Wk < 0,hk < 0}. To reconstruct
the three spectrogram frames S represented as orange dots
in terms of this cone, and to associate them with a sound
source, they need to lie inside this cone. This is the case for
the orange dots inside the olive circles. Datapoints that lie
outside this cone cannot be reconstructed as a non-negative
linear combination of the sound source feature vectors without
reconstruction error. As an unfortunate secondary effect, the
strength of association with this source is diminished as well.

In contrast, a normalizing flow estimates the density of the
feature vectors of the sound source. It models how the feature
vectors were generated, it can easily generate new samples
from this density, and is capable of nonlinearly extrapolating
to unseen new feature vectors. An example of such an unseen
feature vector is shown as a black dot. It is still likely under the
density p(wk

i ) that is modeled by the flow, which is indicated
by the blue contours. The extrapolation capabilities of the flow
enable us to fully associate new, unseen, yet similar feature
vectors to a given sound source, with high likelihood and
almost zero reconstruction error.

B. Related Work

The concept of normalizing flows has been introduced in
[9]. The particular kind of normalizing flow that we use is
called RealNVP, and has been introduced as a parametric den-
sity model in [6]. Although Generative Adverserial Networks
have been used in the context of audio decomposition [10]–
[13] they do not allow explicit access to the likelihood of a data

sample. The likelihood of a data sample under a Variational
Autoencoder is cumbersome to approximate as well, and
necessitates Monte Carlo approximation of an expectation of
a lower bound on the likelihood [14].

III. DIFFERENTIABLE DICTIONARY SEARCH

We introduce a novel, constrained dictionary adaptation
method that we call Differentiable Dictionary Search (DDS).
This method was devised to address the problems outlined in
the introduction, when decomposing mostly linear mixtures of
non-linearly behaving sound sources.

A. The DDS Model

We denote the magnitude spectrogram that we would like to
decompose as S ∈ RD×T

+ , having D spectral bins and T time
frames. We denote the fixed dictionary with N entries as W ∈
RD×N , and the activation matrix as H ∈ RN×T . Supervised
NMF seeks to approximate the spectral frame st ≈

∑
n h

n
t wn,

where hnt is the activation of the n-th dictionary entry wn at
time t. We will now describe how to integrate DDS with the
NMF framework.

To estimate the density of the spectrogram frames for each
sound source, we use a simplified version of RealNVP [6]
without multi-scale architecture, batch normalization, or spa-
tial masking. Instead, we use plain multi-layer perceptrons to
parametrize the affine coupling layers, and randomly chosen,
fixed permutation layers in between the coupling layers.

For each of K sound sources, we train a separate normaliz-
ing flow to obtain a parametrized density estimator fk. A flow
allows explicit evaluation of the likelihood p(x) of a sample
x by computing pZ(fk(x)). A flow can generate samples by
drawing z ∼ pZ and computing f−1

k (z), where pZ(z) is a
prior distribution, which we choose to be a standard isotropic
Gaussian N (µ = 0, Σ = I ), following [6].

DDS approximates an arbitrary spectrogram frame st as a
weighted sum of dictionary components st ≈ ŝt =

∑
k h

k
t wk

t

of K sound sources. The k-th component is generated by the
k-th flow as wk

t = f−1
k (zkt ). For decomposition, DDS updates

the component activations ht ∈ RK
+ and the dictionary entries

in latent space Zt ∈ RD×K that generate components in
data space via the flows {fk}Kk=1, using (projected) gradient
descent on the loss L. Minimizing the loss jointly minimizes
reconstruction error of the mixture, and maximizes likelihoods
of individual components:

L(st, ŝt) = ‖st − ŝt‖2 −
c

D
∑

k h
k
t

∑
k

hkt log pZ(z
k
t ) (1)

The likelihood penalties − log pZ(z
k
t ) on the latent vectors

of individual sources are normalized to nats per dimension by
1
D and weighted by the activation components hkt normalized
by their sum

∑
k h

k
t . The global likelihood penalty weight c is

a hyperparameter of the decomposition and allows to fine-tune
the behavior of the method, balancing reconstruction quality
and deviations from likely dictionary entries. We provide an
illustration of the process in Figure 2.
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Fig. 2. An illustration of DDS decomposing a spectrogram frame.

B. Expected Benefits and Open Questions

Our design addresses the performance limitations of the
strictly linear, overcomplete baseline when we are dealing with
non-linearity of sound sources, while preserving interpretabil-
ity. Due to DDS modelling the data generating process, the
ability to represent arbitrary mixtures of similar sound sources
should be considerably improved. Another benefit is the ability
to better cope with the inevitable distribution shift between the
data used for training the individual sound source models, and
the data which is encountered during decomposition, while
preserving association strength with a sound source.

To investigate the usefulness of the added non-linear ex-
trapolation capability, we designed a set of highly controlled
experiments aimed at revealing the differences between over-
complete NMF and DDS. Both methods need to approximate
both the mixing and the reconstruction aspects of the signal-
generating process. Both assume a linear mixing process;
the approximate reconstruction of sound sources is entirely
different, however. Thus, we will first study and compare
the reconstruction capabilities. We quantitatively evaluate the
differences in ability to generalize to new, unseen data for
isolated sound sources in Section IV-A. This gives us a first
appraisal of the beneficial aspects of DDS, before we compare
the decomposition capabilities. We ensured equal train and test
conditions for both methods, for a fair comparison.

Similarly, we would like to study the discrimination ability
of individual NoteFlows in isolation. NoteFlows need to
assign high likelihoods to unseen samples that are similar
to the training samples, and low likelihoods to unseen and
dissimilar samples. This is a necessary prerequisite for a clear
decomposition into pre-defined components. We quantify the
one-vs-all discrimination ability of the individual NoteFlows,
by determining likelihood thresholds. These permit both soft
and hard constraints on what samples can be generated by the
sound source models, and hence facilitate calibration of the
method. They act as a kind of natural similarity measure to
the data generating process: we can minimize misattributions
by constraining generated samples to have likelihoods below
these thresholds. We will quantify one-vs-all discrimination
on a set of models in Section IV-B. The complete DDS
decomposition scheme will be put to a practical test in IV-C.

IV. EXPERIMENTAL EVALUATION

In order to compare how the methods deal with distribution
shift from sound sources seen during training to (similar)
sound sources encountered during testing, we extract a set
of notes played on various acoustic piano instruments, with
different volume levels (also called “velocity”, in MIDI jargon)
and varying acoustics conditions. We divide the isolated notes
into multiple splits consisting of two disjoint subsets: a training
dataset and a test dataset. We draw upon a commercial
VSTi sample-based synthesizer plugin, called “Spectrason-
ics KeyScape”1, which contains a multitude of high quality
samples of isolated notes played on different acoustic pianos
in various microphone conditions and room reverberation
settings, that provide a rich variety of timbre.

We sample the 4 notes A1, A2, A3, A4 and an additional full
octave A2-A3 (12 notes). For each isolated note, we extract
audio recordings played with 4 representative velocity values
(32, 64, 96, 127) on all of the 43 available acoustic piano pre-
sets. We create 9 different splits by using different subsets of
presets for training and testing, to create multiple distribution
shift scenarios that challenge both methods, and serve as a
realistic testbed displaying real-world characteristics.

We downsample the isolated note recordings to 16 [kHz]
mono waveforms and compute logarithmic magnitude spec-
trograms with a Hann window of size 2048 and hop size
512. We only keep the lowest 512 resulting spectral bins
that represent the frequency range from [0; 4] [kHz], and
normalize the magnitudes to the interval [0; 1]. Depending on
the particular split, we have N spectrogram frames as 512-
dimensional training examples, where N lies in the range
[3504, 25228].

To evaluate DDS, we train a RealNVP model for each
isolated note in the training set. The models have 16 affine
coupling layers, and each coupling function is realized as a
multi-layer perceptron with 4 dense layers of 256 units with
SELU activations [15]. The Adam optimizer [16] is used with
a learning rate of 1 · 10−3 to train each model for up to 1000
epochs, with a minibatch size of 512. The early stopping
criterion was configured to have a patience of 50 epochs.
Density estimation performance is monitored by computing
the mean log-likelihood over a held-out validation set. The
validation set consists of 20% randomly selected training
samples. We refer to these models, trained on isolated notes,
as “NoteFlows” throughout this manuscript. The parameters
of each NoteFlow are fixed during decomposition.

We compare DDS to an overcomplete variant of NMF, with
its dictionary W initialized to the training set and held fixed.
The activation matrix H is initialized to constant values of
1
N where N is number of components given by size of the
training set.

NoteFlows generate spectrogram frames determined by the
noise vectors zkt . We initialize these noise vectors to 0 and set
the global likelihood penalty weight (see Eq.1) to c = 1 ·10−3

for all experiments that follow.

1https://www.spectrasonics.net/products/keyscape/

443



0 2 4 6 8 10 12 14
sample reconstruction error

A1

A2

A3

A4

no
te

Average test Reconstruction Errors for various distribution shifts

DDS
NMF
DDS
NMF

14 12 10 8 6 4 2
normalized log-likelihood [nats per dimension]

A1

A2

A3

A4

no
te

Average test Log-Likelihoods for various distribution shifts

data
DDS
data
DDS

Fig. 3. Quantitative assessment of robustness to distribution shift of the
compared methods DDS and overcomplete NMF.

The decomposition is run for a maximum of 10000 update
steps for both methods, overcomplete NMF and DDS. Early
stopping is possible, as soon as the cost term changes by
less than ε = 1 · 10−15, between update steps. If the cost
term fluctuates, but there is no progress for 10 consecutive
steps, the learning rate is reduced by a factor of 2. For all
decompositions, the Adam [16] optimizer is used. After each
update step, the current solution is projected back into the
non-negative orthant to satisfy all constraints.

A. Non-linear Extrapolation

After DDS is trained using the aforementioned procedure,
and the dictionary matrix of overcomplete NMF is initialized
with the spectrogram frames of the same train set, we study
the reconstruction error of each method on new, unseen sound
sources. This is shown in the upper half of Figure 3, where
each data point represents the average reconstruction error
over the test samples of a particular split. In the lower half
of Figure 3 we look at the tradeoff between reconstruction
error and sample likelihood,. The likelihoods of test samples
with zero reconstruction error (labeled as data) are contrasted
with the likelihoods of test samples where a small amount of
reconstruction error is allowed, while the sample is kept likely
(labeled as DDS).

We can see clear evidence for the advantage of DDS over
the overcomplete, linear NMF baseline when it comes to
reconstruction quality. This is especially apparent for the low
note A1, but can be observed across all four octaves. The lower
half of Figure 3 shows a noticable decrease in likelihood if
one insists on a perfect reconstruction. What we can observe
is that DDS is perfectly capable of producing reconstructions
with low error while still staying close to the training data
distribution.

B. Discrimination Ability of NoteFlows

To assess the potential for DDS to wrongly attribute spectral
activity, we measure one-sided discriminativeness on one

A2 A#2 B2 C3 C#3 D3 D#3 E3 F3 F#3 G3 G#3 A3
Note
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C3

C#3

D3

D#3

E3

F3

F#3

G3

G#3

A3

No
te

Fl
ow

1 0.24 0.22 0.33 0.25 0.31 0.25 0.28 0.23 0.24 0.3 0.24 0.91
0.18 1 0.22 0.31 0.27 0.26 0.3 0.21 0.28 0.2 0.26 0.22 0.19
0.29 0.25 1 0.26 0.21 0.22 0.28 0.26 0.21 0.25 0.26 0.26 0.23
0.26 0.21 0.2 1 0.24 0.21 0.17 0.22 0.21 0.22 0.26 0.22 0.25
0.24 0.26 0.27 0.29 1 0.32 0.23 0.21 0.25 0.27 0.28 0.39 0.25
0.21 0.2 0.19 0.21 0.27 1 0.21 0.24 0.24 0.19 0.21 0.17 0.25
0.22 0.23 0.2 0.27 0.26 0.23 1 0.23 0.16 0.18 0.24 0.23 0.22
0.23 0.19 0.17 0.19 0.23 0.22 0.21 1 0.31 0.26 0.25 0.24 0.22
0.26 0.23 0.13 0.15 0.35 0.27 0.25 0.17 1 0.16 0.29 0.24 0.24
0.17 0.17 0.22 0.25 0.27 0.22 0.17 0.19 0.23 1 0.24 0.16 0.18
0.23 0.15 0.15 0.24 0.24 0.21 0.16 0.19 0.18 0.26 1 0.18 0.22
0.26 0.18 0.15 0.2 0.28 0.23 0.25 0.23 0.21 0.17 0.23 1 0.2
0.35 0.15 0.22 0.18 0.26 0.24 0.22 0.27 0.18 0.16 0.29 0.21 1

One-sided discrimination by likelihood thresholding

Fig. 4. Confusion of NoteFlows in terms of likelihood-based one-sided
discrimination ability between their “correct” notes, and all the other notes.
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Fig. 5. Illustration of likelihood thresholding in definition of one-sided
discriminativeness quantifier.

representative split. Given a model of source k and a set of N
test samples xk similar to source k as well as test samples
xj of a different source, the one-sided discriminativeness
measure is defined as the ratio of the number of samples of
source k (blue histogram in Figure 5) below the “likelihood
threshold”, to the number of all samples of source k (entirety
of blue area in Figure 5). The likelihood threshold θ is defined
as the maximum over the likelihoods of the samples of the
different source j under the NoteFlow model for source k. This
leads to the expression dos =

(∑N
n=1[p(x

k
n) < θ]

)
/N and,

intuitively speaking, measures how many of the samples that
the NoteFlow should model as “likely” – using likelihood as a
kind of natural similarity measure – are confused with samples
of some other source, that should be deemed “unlikely” under
this particular NoteFlow.

We trained 13 NoteFlows to model one full octave of piano
notes, and computed the one-sided discriminative measure for
all of them, using unseen data from the test set. The entries in
the confusion matrix in Figure 4 are the ratios as previously
defined. Lower numbers are better. The main diagonal is
always one by definition. Out of curiosity, we computed the
one-sided discriminativeness with samples solely from the
training data, which yielded a confusion matrix with all entries
very close to zero. This shows that the method is capable
of explaining the majority of spectral evidence by assigning
correct sources. We find this encouraging, and note that there
is still room for improvement regarding the generalization
capabilities of the parametric density estimation models we
currently employ.
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Fig. 6. Demonstration of semantic decomposition capability. Activation matrices; on the left. Thresholded activation matrices visualizing the underlying
computation of the (M)IR metrics by highlighting where True Positives (TP), False Negatives (FN) and False Positives (FP) are; on the right.

C. Semantic Decomposition

Finally, we compare the abilities of DDS and overcomplete
NMF to decompose a short piece of polyphonic piano music
into its individual notes. We rendered the piece twice, once
with an instrument seen during training, and once with a
new, unseen instrument, using the same splits as in Section
IV-B. Each method needs a global threshold to binarize the
activity matrix H, so the F1-score for frame-level source
attribution can be computed. The optimal threshold for each
method is a trainable parameter, and is determined on the
training piece. During test time the two respective thresholds
are held fixed and used to binarize the activity matrices of
the decompositions. Finally, we compute the F1-score for the
binary activity matrices on the test piece.

The results of these decompositions are shown in Figure 6.
The left column shows the raw activations of source compo-
nents for each method. For the overcomplete NMF approach,
each row of the activation matrix is computed as the sum of the
activities of all dictionary entries belonging to a given source.
The right column shows the binarized activations, contrasted
with the ground truth. The resulting F1-score can be found in
the titles.

V. CONCLUSION

We observe that despite the possibility for confusion of
sources, as measured in Figure 4, DDS demonstrates its ability
to strongly associate spectral activity to the appropriate source.
This demonstrates a clear improvement of decomposition
performance over the linear, overcomplete NMF baseline, as
measured by the frame-level F1 metric. The improvement
can be directly attributed to the great improvement in recall,
and we interpret this improvement as direct evidence for the
usefulness of introducing non-linear extrapolation capability
into the general NMF framework to jointly achieve clearer
decompositions and better reconstructions of the sources.

REFERENCES

[1] D. Lee and H. S. Seung, “Learning the parts of objects by non-negative
matrix factorization,” Nature, vol. 401, pp. 788–791, 1999.

[2] P. Smaragdis, “Non-negative matrix factor deconvolution; extraction
of multiple sound sources from monophonic inputs,” in Independent
Component Analysis and Blind Signal Separation, Fifth International
Conference, ICA 2004, Granada, Spain, vol. 3195. Springer, 2004, pp.
494–499.

[3] D. L. Donoho and V. Stodden, “When does non-negative matrix factor-
ization give a correct decomposition into parts?” in Advances in Neural
Information Processing Systems 16 [Neural Information Processing Sys-
tems, NIPS 2003, Vancouver and Whistler, British Columbia, Canada].
MIT Press, pp. 1141–1148.

[4] P. Smaragdis, B. Raj, and M. V. S. Shashanka, “Supervised and semi-
supervised separation of sounds from single-channel mixtures,” in Inde-
pendent Component Analysis and Signal Separation, 7th International
Conference, ICA 2007, London, UK, vol. 4666. Springer, 2007, pp.
414–421.

[5] J. Mairal, F. R. Bach, and J. Ponce, “Task-driven dictionary learning,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 4, pp. 791–804,
2012.

[6] L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estimation using
Real NVP,” in 5th International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France.
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[10] Y. C. Sübakan and P. Smaragdis, “Generative adversarial source separa-
tion,” in 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing, ICASSP 2018, Calgary, AB, Canada. IEEE, 2018,
pp. 26–30.

[11] L. Li, H. Kameoka, and S. Makino, “Determined audio source separation
with multichannel star generative adversarial network,” in 30th IEEE
International Workshop on Machine Learning for Signal Processing,
MLSP 2020, Espoo, Finland. IEEE, 2020, pp. 1–6.

[12] D. Stoller, S. Ewert, and S. Dixon, “Adversarial semi-supervised audio
source separation applied to singing voice extraction,” in 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing,
ICASSP 2018, Calgary, AB, Canada. IEEE, 2018, pp. 2391–2395.

[13] R. Tanabe, Y. Ichikawa, T. Fujisawa, and M. Ikehara, “Music source
separation with generative adversarial network and waveform averag-
ing,” in 53rd Asilomar Conference on Signals, Systems, and Computers,
ACSCC 2019, Pacific Grove, CA, USA. IEEE, pp. 1796–1800.

[14] Y. Bando, M. Mimura, K. Itoyama, K. Yoshii, and T. Kawahara,
“Statistical speech enhancement based on probabilistic integration of
variational autoencoder and non-negative matrix factorization,” in 2018
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing, ICASSP 2018, Calgary, AB, Canada, pp. 716–720.

[15] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-
normalizing neural networks,” in Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural Information Process-
ing Systems 2017, Long Beach, CA, USA, pp. 971–980.

[16] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA.

445


