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Abstract—Most of today’s speech enhancement algorithms try
to improve the quality or intelligibility of speech by modifying
its time-frequency (TF) representation. It is often the case that
individual parts of this TF plane become unusable due to severe
disturbances or are even missing due to data loss. Here, we
present a generally applicable speech inpainting algorithm to
reconstruct the unusable or missing parts of the speech’s TF
representation in these cases. For the generalizability, we propose
a statistically based error model that we use to train deep
neural networks (DNNs). In order to minimize the complexity
of this overall algorithm and still be able to achieve good
results, we have trained the DNNs on the basis of mel frequency
cepstral coefficients (MFCCs), which are designed based on the
human auditory system. Our experimental results show that the
proposed algorithm is well suited in reconstructing even very
large unusable or missing TF parts. Using the example of artifical
bandwidth extension (BWE), we demonstrate that our proposed
way of training DNNs on random rectangular gaps or holes in
the TF plane leads to a generally applicable solution for various
specific problems in the speech processing domain.

Index Terms—Speech inpainting, deep neural networks
(DNNs), speech enhancement, machine learning, mel frequency
cepstral coefficients (MFCCs)

I. INTRODUCTION

Speech signals are often subject to local disturbances, which
can be limited to both frequency and time. One common
approach in speech enhancement, e.g., in noise reduction or
echo suppression, is to attenuate these disturbances (see [1]).
This is typically done by applying a spectral weight G ∈ [0, 1]
to the time-frequency (TF) representation, where G is close
to 0 in regions where the disturbances are dominant and close
to 1 otherwise. Especially when using a binary weighting, i.e.
by setting G either to 0 or 1, this produces time- and frequency-
limited gaps in the spectrum, which in turn may lead to audible
artefacts.

Apart from these time- and frequency-limited gaps that
may result from speech enhancement algorithms, additional
time- or frequency-limited gaps may occur as a result of the
transmission of speech over a communication channel. These
can have different causes. On the one hand, the bandwidth
of the transmitted speech is typically limited and thus only
parts of the speech’s lower frequencies are transmitted. On the
other hand, errors can occur during the transmission of speech
over, e.g., wireless networks, which lead to packet losses and
thus missing intervals in the transmitted data. Both cases can
be described by a binary spectral weighting by setting those

entries of G to 0 where either frequencies or time intervals are
missing.

Regardless of their exact shape, these gaps generally lead
to a degraded speech quality and intelligibility. Therefore,
already extensively researched approaches exist to reconstruct
the speech signal in these gaps. For example, in [2], [3]
different algorithms for artificial bandwidth extension (BWE)
and in [4], [5] for packet loss concealment (PLC) are presented.
Furthermore, there are also several studies on the reconstruction
of temporal gaps in non-speech audio signals, e.g., [6], [7].
However, in most cases these algorithms are designed for a
special class of problems and thus restricted to purely time-
or frequency-limited gaps. For time- and frequency-limited
gaps, e.g. resulting from a spectral weighting within a noise
reduction as described above, those algorithms are usually
not suitable. Only a few approaches, like in [8]–[10], already
exist that are able to address this more generalized problem
which is decoupled from a concrete application and is rather a
solution to different types of interference that can occur in a
wide variety of speech processing systems. Similar to image
inpainting from digital image processing, for the case of speech
signals these algorithms can be summarized under the term
speech inpainting. While for a certain problem class a certain
error type and thus also a certain corruption mask is predefined,
the goal of speech inpainting is to be generally applicable to a
wide range of problem classes. That is, speech inpainting is
not intended to correct specific corruption patterns, but rather
to learn some kind of internal models for the speech.

In this study, we propose to learn the complex mapping
function from corrupted to uncorrupted speech using nonlinear
deep neural network (DNN)-based regression models. We
do this by first transforming the signals into a compressed
representation given by the mel frequency cepstral coefficients
(MFCCs) instead of training the DNNs directly on, e.g., the
short-time Fourier transform (STFT). This reduces the DNNs’
complexity and leads to significantly shorter training times.
While previous studies often only focused on the reconstruction
of specific gaps, we propose a statistically based error model
with the target to cover a broad range of different shaped
gaps. Specifically, we propose to train on randomly distributed
rectangular gaps to obtain DNNs that are applicable to a variety
of different specific problems without the need for re-training.
Thus, in this study, we evaluate these DNNs not only on such
randomly distributed gaps, but also on gaps that occur in the
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Fig. 1. Block diagram of the proposed speech inpainting algorithm.

specific problem of BWE. According to our knowledge, this is
one of the first research that has trained DNNs in this way and
investigated their generalizability to specific problems from
speech processing.

II. SPEECH INPAINTING ALGORITHM

Fig. 1 shows the speech inpainting algorithm. In the training
stage, a regression DNN model is trained using pairs of uncor-
rupted and corrupted speech sequences s and s̃, respectively.
In the prediction stage, the trained model M is used to
reconstruct the predicted uncorrupted speech sequence ŝ based
on a corrupted speech sequence s̃.1 The individual elements
of the block diagram are explained in detail in the following
subsections.

A. Sequence Creation

For the creation of the uncorrupted and corrupted sequences
used for the training, all i = 1, . . . ,M individual speech
signal files are first normalized to −26 dBoV and resampled to
fs = 16 kHz. In order to prevent the DNN from merely learning
to reconstruct silence, speech pauses at the beginning and end
of the speech signals are cut off. The resulting normalized and
trimmed speech signals si are concatenated and build up the
uncorrupted sequence s. The corrupted sequence s̃ is generated
by concatenating the corrupted signals s̃i. These s̃i are created
by multiplying the STFT spectra Si (λ, µ) of the uncorrupted
signals si with binary corruption masks Gi (λ, µ) ∈ {0, 1} and
then calculating the inverse STFT (ISTFT), i.e.

s̃i (t) = STFT−1 (Gi (λ, µ) · Si (λ, µ)) (1)

where the TF plane is spanned by the frame index λ =
1, . . . , λi,max and the frequency bin index µ = 1, . . . , µmax.
Here, we use a 640 samples square-root hann window with
320 samples overlap and µmax = 640 frequency bins for the
STFT. The ISTFT is calculated by employing the same window
for the overlap-add synthesis and then truncating the resulting
signal back to the original length of si. Although λi,max

depends on the length of si, the index i is omitted in the
following for the sake of simplicity.

As already mentioned in the introduction, the corruption
masks Gi take on different forms depending on the problem

1Although the corrupted sequence s̃ and thus all other variables in the
training and prediction stage are not necessarily identical, additional indices
are not included in this study for the sake of simplicity.

class, e.g. BWE, PLC etc. In this study, we propose to
use a statistically based error model that generates random
rectangular gaps for training in order to achieve a generally
applicable solution to these problem classes. These random
rectangular gaps are referred to as “uniform gaps” in the follow-
ing and are uniformly distributed over both time and frequency.
Besides the position of their centre, also the duration ∆λ and
frequency width ∆µ of each individual gap are randomly drawn
from a uniform distribution, i.e. ∆λ ∼ U (∆λmin,∆λmax)
and ∆µ ∼ U (∆µmin,∆µmax). Since the gaps are random, the
corruptness before the creation of training data can only be
specified using a heuristic measure for the corruption percentage

p̂ =
2N ·∆λ ·∆µ
λmax · µmax

(2)

with N ∈ N0 being the number of inserted gaps, ∆λ =
∆λmin + (∆λmax −∆λmin) /2 being the mean duration
and ∆µ = ∆µmin + (∆µmax −∆µmin) /2 being the mean
frequency width of the individual gaps. Because of possible
overlaps and gaps ranging out of the TF plane, this heuristic
measure typically differs from the actual corruption percent-
age p given by the percentage of zeros contained in Gi.
Nevertheless, the estimation in (2) can be considered as a
rough upper bound for the corruption percentage and thus
be used to determine the required number of gaps N for a
desired p̂.

B. Feature Extraction

In order to reduce the complexity, the created sequences s
and s̃ are transformed into a lower-dimensional feature domain.
This removes redundancy and leads to a faster training of the
DNNs. Therefore, a feature extraction is used to transform the
corrupted sequence s̃ into the input feature vectors x which
serve as input for the DNNs. The output of the DNNs is defined
by the output features y that are used as labels during training
and are determined by applying a feature extraction to the
uncorrupted sequence s. Since the predicted output features ŷ
are used to reconstruct the predicted uncorrupted sequence ŝ
in the prediction stage, the total achievable performance is
limited by the selected output features y.

In this study, we selected the MFCCs as both input and
output features. Specifically, we have used the implementa-
tion from [11] with the following parameters: 640 samples
window length, 320 samples overlap, 128 spectral bands with
a frequency band range from 20 Hz to 8 kHz, 32 cepstral
coefficients, a preemphasis factor of 0.97 and a liftering
exponent of 0.6. This number of cepstral coefficients was
chosen to achieve a good tradeoff between complexity and
achievable performance, reducing the amount of data per frame
from 640 samples to only νmax = 32 MFCCs.

C. Feature Preprocessing and DNN Training

The preprocessing is done by first normalizing the input
features x to zero-mean and unit-variance. Then, each input
frame λ is expanded by copies of it’s τ = (T − 1) /2 preceding
and succeeding frames where T ∈ 2N − 1 is the input span.
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Thus, in total T adjacent frames are used as input to the
DNN, giving it additional acoustic contextual information for
inpainting the centered frame. After feature preprocessing, pairs
of the resulting preprocessed input MFCCs x′ and the output
MFCCs y are shuffled and used for training the multiple output
regression DNN.

D. Reconstruction and Post-Processing

Even though MFCCs were not originally developed for
speech synthesis, different investigations on the inversion of
MFCCs for speech enhancement already exist (see [12]). Here,
we use the inversion algorithm given in [11] to reconstruct the
predicted uncorrupted sequence ŝ from the predicted output
MFCCs ŷ. Since the MFCCs discard the phase information
of the original signal, this implementation uses white noise as
excitation for the reconstruction.

After reconstruction, additional post-processing steps can
be applied to the predicted uncorrupted sequence ŝ in order
to generate the actual inpainted sequence ŝ′. In typical
applications, the corruption mask G, i.e. the position and shape
of the gaps, is known or can be easily detected. This knowledge
is exploited in our first post-processing step. Therefore, only
the gaps in the STFT of the corrupted sequence s̃ are filled
with the corresponding STFT parts of the predicted sequence ŝ,
where the gaps are determined by comparing the STFTs of s
and s̃ (“filled gaps”). For evaluation purposes, another optional
post-processing step can be applied in order to eliminate the
phase error due to the white noise excitation. This is done by
replacing the phase of the predicted uncorrupted sequence ŝ
with the phase of the original uncorrupted sequence s (“cheated
phase”).

III. EXPERIMENTAL RESULTS AND ANALYSIS

All experiments were performed on the VCTK database
which is an English speech corpus comprising several speakers
with different accents [13]. We splitted the speakers into
three subsets, namely training, validation and test, so that
all subsets contain approximately the same proportion of male
and female speakers. After sequence creation (see Sec. II-A),
this results in approximately 18.5 hours of training, 3.5 hours
of validation and 3.5 hours of test data. Similar to [2], [14]
we selected three fully connected feedforward neural networks
(NNs) with only NL = 1 hidden layer and different hidden
units per layer NU = 512, 2048, 6144 as well as two DNNs
with NL = 2, 3 hidden layers and NU = 2048 hidden
units per layer (denoted as DNNNL

NU
). These different DNN

configurations were each trained for different input spans T =
1, 3, 5, 7, 9, 11. We trained all DNNs for 50 epochs using a
batch size of 128 frames, batch normalization after each hidden
layer, rectified linear units (ReLUs) as activation functions
for the hidden layers and linear functions for the output
layer. Xavier uniform was used as initializer [15], AdaGrad
as optimizer [16] and the mean squared error (MSE) as loss
function. After each full epoch, the DNNs were evaluated on
the validation set, so that the DNN at the most powerful epoch
can be selected at the end of the training.
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Fig. 2. Exemplary speech inpainting result for the uniform case. From left to
right: Corrupted, predicted (with highlighted gaps) and uncorrupted STFT.

Same as for the loss function, we also used the MSE
of the output MFCCs to determine the best epoch. Three
instrumental measures were chosen for evaluating the quality
of the inpainted sequence ŝ′. Those are log-spectral distance
(LSD in dB), short-time objective intelligibility (STOI) [17] and
perceptual evaluation of speech quality (PESQ) [18]. For all
three measures, the uncorrupted sequence s is always used as
reference in order to evaluate the overall performance including
all processing steps. In the following experiments, only the
most relevant results of the quality measures and the examined
DNN configurations are given due to space limitation and for
comprehensibility.

A. Evaluation for the Uniform Case

Before investigating their generalizability (see Sec. III-B),
we first evaluate the DNNs trained on uniform gaps for
uniform gaps as well. Therefore, we created the training and
validation data with uniform gaps using a duration ranging
from ∆λmin = 5 (i.e. 100 ms) to ∆λmax = 15 (i.e. 300 ms),
a frequency width ranging from ∆µmin = 20 (i.e. 500 Hz)
to ∆µmax = 120 (i.e. 3 kHz) and a heuristic corruption
percentage of p̂ = 30% (see Sec. II-A). An exemplary speech
inpainting result for this case can be seen in Fig. 2. More audio
samples are available online (see [19]). As can be seen from
the corrupted STFT, there is almost no time frame (i.e. column)
that does not contain any corruption. Conventional schemes like
a PLC algorithm under frame erasure condition, i.e. erasing all
corrupted frames, would not have enough uncorrupted context
and would fail to reconstruct this kind of data. Hence, they are
not suitable for a fair comparison. In contrast, our algorithm
can be applied to arbitrary corruptions which highlights the
flexibility of our proposed speech inpainting algorithm.

First, only the fill gaps step is used after all reconstructions,
including those for the reference scores. Fig. 3a shows the
average PESQ results on the uniform validation set for different
DNN configurations DNNNL

NU
and different input spans T .

The horizontal black dashed lines in Fig. 3a and 3b serve
as lower and upper bounds for the trained DNNs, showing the
limitations of quality due to the lossy MFCC transformation.
They represent the case where the DNNs predict the labels
without any error (upper line) or where no inpainting is done
at all (lower line). Specifically, the lower line results from a
comparison with the original corrupted sequence s̃ and the
upper line is the PESQ value of the sequences reconstructed
from the uncorrupted MFCCs y, which result from the feature
extraction applied to the uncorrupted sequence s. It can be
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Fig. 3. Average PESQ results with different input spans T on the uniform
validation set for different DNN configurations (ascending sorted by complex-
ity). Only gaps in the TF plane are filled using the prediction from the DNNs.
The horizontal lines represent upper and lower reference quality limits.

seen that the PESQ values of all trained DNNs exceed at
least half of the reference range and hence drastically increase
the performance compared to no modification. Furthermore,
it can be seen in Fig. 3a that the PESQ value is improving
for increasingly complex DNNs. Especially the increasing
number of layers NL has a positive influence. As became
clear from further investigations, this is mainly due to the
batch normalization, which is particularly helpful for the
learning process of deeper DNNs. Similar to the results in [14],
increasing the input span T (at least up to T = 11) tends to
improve the PESQ value for a fixed DNN configuration.

Now, as an alternative for the white noise excitation, we
investigate the cheated phase case. This allows us to examine
the extent our algorithm can be improved with a more
sophisticated phase reconstruction technique. Fig. 3b shows
the new average PESQ results on the validation set when the
post-processing step for cheating the phase is added. Again,
black dashed reference lines are drawn in. While the lower line
is equivalent to Fig. 3a, the upper line increased by 0.39. As
expected, the performance of all DNN configurations also
improved. Specifically, the average PESQ score increases
by 0.31, which is roughly equivalent to the increase of the
upper line. This shows that even better results can be expected
with a more complex phase reconstruction technique, whose
lower and upper bounds are approximately given by the results
in Fig. 3a and Fig. 3b.

B. Evaluation for the Lower-Bandwidth Case

Now, we investigate whether the proposed way of training on
randomly distributed rectangular gaps leads to DNNs that are
applicable to other specific problems from speech processing.
Specifically, in this study, we consider the BWE for this purpose.
Therefore, we have generated three new training and validation
sets, which do not have uniform gaps, but instead bandwidths
reduced by the corruption percentages p = 30%, 50%, 75%.
Since we have always removed the upper frequencies, i.e.
from the nyquist frequency fs/2 = 8 kHz downwards, this

n/a
(not supported by AudioUNet)

0 1 2
0

2

4

6

8

Time [s]

A
ud

io
U

N
et

Fr
eq

ue
nc

y
[k

H
z]

0

2

4

6

8

Pr
op

os
ed

D
N
N

U

Fr
eq

ue
nc

y
[k

H
z]

p = 30%

0

2

4

6

8

Pr
op

os
ed

D
N
N

L
B

Fr
eq

ue
nc

y
[k

H
z]

p = 50%

0 1 2
Time [s]

p = 75%

0 1 2
Time [s]

Fig. 4. Exemplary speech inpainting results for the lower-bandwidth case using
filled gaps sequence with different models. Top: DNNU trained on uniform
gaps. Middle/Bottom: DNNLB and waveform-based AudioUNet specifically
trained on the individual lower-bandwidth data. The horizontal lines mark the
cut-off frequencies fc. The corresponding uncorrupted STFT can be found in
Fig. 2.

results in lower-bandwidth data with cut-off frequencies fc =
5.6 kHz, 4 kHz, 2 kHz. For this investigation we selected the
best performing DNN configuration from the uniform case,
i.e. NL = 3 hidden layers and NU = 2048 hidden units per
layer with an input span T = 11.

For each corruption percentage p, we trained a DNN on
the individual lower-bandwidth data, which we summarize
as DNNLB in the following. The best DNN presented in
Sec. III-A was intentionally not re-trained on this new lower-
bandwidth data and is denoted as DNNU in the following. As in
the previous section, we again use the fill gaps sequence for all
evaluations. In order to compare our results with a state-of-the-
art algorithm, we use the AudioUNet [3] as one more reference
and therefore trained it on the individual lower-bandwidth
data. In contrast to the proposed DNNU and DNNLB, the
AudioUNet is working on raw waveform audio data. In Fig. 4
exemplary speech inpainting results of all three models for
the lower-bandwidth case are depicted. More audio samples
are available online (see [19]). While the AudioUNet is
only applicable for corruption percentages corresponding to
upscaling factors of 2, 4, 6, etc., our algorithm can be applied
to any corruption percentage. This, again, highlights the
flexibility of our proposed speech inpainting algorithm.

Table I shows the results for the three models. While DNNU

was only trained on uniform gaps, DNNLB and AudioUNet
were specially trained on the different lower-bandwidth data
percentages. Our DNNU and DNNLB outperform the Au-
dioUNet w.r.t. LSD for all corruption percentages p when
using white noise (WN) excitation. In terms of STOI, our
DNNs almost achieve identical results as the AudioUNet
and DNNLB even surpasses it for p = 75%. Thus, the
results of DNNU are very close to those of DNNLB and the
AudioUNet, even though DNNU has never been trained for
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TABLE I
AVERAGE LSD/STOI RESULTS ON THE LOWER-BANDWIDTH DATA WITH

DIFFERENT CORRUPTION PERCENTAGES p. WN DENOTES THE CASE WHERE
WHITE NOISE IS USED AS EXCITATION AND CP DENOTES THE CHEATED

PHASE CASE.

p = 30%
fc = 5.6 kHz

p = 50%
fc = 4kHz

p = 75%
fc = 2kHz

LSD STOI LSD STOI LSD STOI

DNNU
WN 3.072 0.9999 4.736 0.9982 7.935 0.9126
CP 2.321 0.9999 3.787 0.9987 6.761 0.9260

DNNLB
WN 3.066 0.9999 4.502 0.9984 6.644 0.9408
CP 2.230 0.9999 3.470 0.9989 5.393 0.9529

AudioUNet n/a n/a 6.105 0.9985 8.688 0.9185

this special problem of BWE. This confirms our hypothesis
that training DNNs on randomly distributed rectangular gaps
leads to a robust solution which is applicable for various
problems from speech processing. To even further validate this
hypothesis, we investigated the cross check, i.e., how DNNLB

behaves on the uniform gaps. Specifically, we applied DNNLB

trained for p = 50% to the same sequences as in Sec. III-A
and obtained PESQ scores of 1.66 and 1.74 for white noise
excitation and the cheated phase case, respectively. Both scores
are even below the lower bound of 1.9, i.e., when the original
corrupted sequence is used. This shows that while DNNLB is
not applicable to problems other than BWE, DNNU trained on
uniform gaps is very flexible and can be applied to different
problem classes.

Considering the cheated phase (CP) case, our pro-
posed DNNU and DNNLB surpass the AudioUNet for all
corruption percentages w.r.t. both LSD and STOI. Accordingly,
even better results can be expected when a more sophisti-
cated phase reconstruction technique is used. Moreover, this
demonstrates that our proposed algorithm is able to outperform
state-of-the-art algorithms when trained for a specific problem.
The good results of our algorithm suggest that MFCCs are
particularly suitable for prediction of the upper frequencies.
This is probably due to the fact that at high frequencies a
rough, rather noisy estimate of the speech’s STFT is sufficient.
Here the MFCCs benefit from the fact that they smooth this
upper frequency range very strongly due to the mel-weighting
and a low frequency resolution in this range. In the lower
frequencies, on the other hand, speech typically contains
harmonic structures that are attenuated by smoothing during
the MFCC transformation.

IV. CONCLUSIONS

In this work, a speech inpainting algorithm for the reconstruc-
tion of missing parts in the TF representation of speech using
DNNs trained on MFCCs is proposed. Overall, a significant
improvement of the PESQ score from 1.9 up to 2.8 can be
achieved for speech inpainting on random rectangular gaps
where conventional schemes like a PLC algorithm can not be
applied successfully. On average, the use of more acoustic
contextual information by increasing the input span leads to
an improvement in performance, i.e. the achieved PESQ score.
We have found that the MFCCs are particularly helpful for
reconstruction of the upper frequencies of speech. Our target

was to train DNNs that generalize and are applicable to different
use cases from speech processing. Thus, we did not focus on the
network architecture, but on the training data. We showed that
our proposed way of training DNNs on random rectangular gaps
leads to an algorithm that, applied to BWE, achieves almost
the same performance level of specially trained DNNs. In the
future, we intend to further investigate this generalizability to
other specific problems, e.g., PLC.
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