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Abstract—In this paper we investigate several sparse derever-
beration methods which provide signal enhancement in reverber-
ant environments with the aim to apply them as a preprocessing
step for the distant speaker verification (SV) task. First, we
present multichannel linear prediction (LP) based techniques
which promote sparsity of the dereverberated speech, whose
performance has never been verified in the context of speaker
recognition. In particular, we describe two existing sparse LP-
based methods and present a novel LP-based method in which
speech sparsity is enforced by adopting the so-called split Breg-
man approach. We then study the performance of both sparse and
nonsparse dereverberation approaches for signal enhancement,
and investigate the gain offered by these methods when applied
as a preprocessing step for two different speaker verification
systems based on DNN-based speaker embedding extraction.
The results of performed experiments indicate that the proposed
sparse approach and one of the existing methods consistently
achieve significant improvements in distant speaker verification in
reverberant environments, and that the SV results are well in line
with signal enhancement achieved by the compared techniques.

Index Terms—speaker recognition, dereverberation, linear pre-
diction, sparse optimization, DNN-based speaker embedding

I. INTRODUCTION

It is well known that the performance of speaker verifi-

cation (SV) systems degrades when acoustic conditions are

different to those in the training dataset. Recent solutions to

tackle this problem require large amount of training data [1]

or carefully prepared datasets that enable system adaptation

by transfer learning [2], [3], enrollment adaptation [3] or

backend modelling [4], [5]. To mitigate the detrimental effect

of room reverberation, an alternative approach consists in

speech enhancement as a front-end processing to the speaker

recognition system. Recent VOiCES from a Distance Chal-

lenge [6] demonstrated the popularity of a linear prediction

(LP) based dereverberation technique known as the Weighted

Prediction Error (WPE) [7], as an effective method to cope

with the reverberant signal in the speaker recognition task

[6], [8]–[10]. Since nonreverberant speech exhibits a sparse

structure in the time-frequency domain, compared with the

representation of the reverberant speech, speech sparsity has

been additionally exploited in the literature to achieve stronger

dereverberation [11], [12]. Such methods either assume sparse
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signal distributions, e.g. a Complex Generalized Gaussian

(CGG) [11] or a Laplacian [13] distribution, or incorporate ℓ1-

norm sparsity terms in the cost function such as in Alternating

Direction Method of Multipliers (ADMM) [12].

This paper presents the performance gain offered by using

sparse LP-based dereverberation as a pre-processing step for

speaker verification in reverberant environments, which to our

best knowledge has not yet been reported in the literature.

Specifically, we present a novel sparse split Bregman (SSB)

dereverberation method [14], and compare it against three

existing techniques, namely the nonsparse WPE method [7]

and two sparse methods known as CGG [11] and ADMM

[12]. The SSB method can be considered a generalization of

[7], [11] and [12]. In particular, its cost function follows from

sparse distribution as in CGG [11], however, the sparsity term

of ADMM [12] is also incorporated, with an additional term

which ensures the LP-based solution [7]. This leads to a great

improvement of the quality of the dereverberated signal over

the ADMM method and better control of sparsity than in the

CGG method. Stronger suppression of reverberation is shown

to further enhance the speech signal, and also to increase

the accuracy of distant speaker recognition. The SV results

are presented for two SV systems, namely the state-of-the-art

DNN-based speaker embedding extractor known as the Time

Delay Neural Network (TDNN) [15] and a modified ResNet18

which has been proposed by the current authors in [16].

II. SPARSE LINEAR PREDICTION BASED

DEREVERBERATION

In this section, we present a signal model used in linear

prediction based dereverberation, describe state-of-the-art non-

sparse and sparse methods, and present a novel method which

promotes speech sparsity using the split Bregman approach.

The aim of linear prediction based dereverberation is to

estimate the desired speech component (i.e., speech that prop-

agates over the direct and early reflection paths) by subtract-

ing the undesired reverberant speech component (i.e., speech

convolved with late room reverberation) predicted using a

linear filter from the microphone signals. The signal of the

m-th microphone in the short-time Fourier transform (STFT)

domain is given by

xm = dm + XD c, (1)

where dm = [dm(k, 0), dm(k, 1), ..., dm(k,N − 1)]T ∈ C
N×1

is the desired signal vector, the prediction filter coefficient vec-
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tor is denoted as c = [(c0)T, (c1)T, ..., (cM−1)T]T ∈ C
MLc×1

with cm = [c(k, 0), c(k, 1), ..., c(k, Lc − 1)]T ∈ C
Lc×1,

and the convolution matrix delayed by D time frames is

given by XD = [x̄D(0), x̄D(1), ..., x̄D(N − 1)]T ∈ C
N×MLc

where x̄D(n) = [(x0
D)

T(n), (x1
D)

T(n), ..., (xM−1
D )T(n)]T ∈

C
MLc×1 with xmD(n) = [xm(k, n − D), xm(k, n − D −

1), ..., xm(k, n − D − Lc + 1)]T ∈ C
Lc×1. The microphone

index is given by m = 0, 1, ...,M − 1, the length of the

prediction filter is denoted as Lc, whilst n = 0, 1, ..., N − 1
and k = 0, 1, ...,K−1 denote the time and frequency indices.

In the following, we assume that each subband frequency

in the STFT domain is modelled independently and that we

dereverberate the signal of the reference microphone. Thus

hereafter we discard the microphone and frequency indices.

A. Nonsparse linear prediction dereverberation

The most popular nonsparse LP-based dereverberation tech-

nique is the Weighted Prediction Error (WPE) method [7],

which is derived by modeling the desired speech in each

frequency bin using a circular complex Gaussian distribution

NC

(

d(n); 0, λd(n)
)

with zero mean and an unknown time-

varying variance λd(n). With a linear relation (1) between the

desired signal d and the filter coefficients c, the likelihood

function is defined as

L
(

c,λd
)

=

N−1
∏

n=0

1

πλd(n)
e
−

|d(n)|2

λd(n) , (2)

which yields the negative log-likelihood to be minimized

min
c,λd

N−1
∑

n=0

|d(n)|2

λd(n)
+ logeλd(n) . (3)

In order to estimate c and λd = [λd(0), ..., λd(N − 1)]T ∈
R
N×1, the joint optimization (3) is split into two sub-problems

that are solved in an alternating fashion. The method that

minimizes (3) will be referred to as the WPE method [7].

B. Promoting sparsity using a sparse prior distribution

Speech sparsity in the STFT domain can be modeled using

an appropriate sparse distribution. In [11] Jukic et al. propose

to use the so-called Complex Generalized Gaussian (CGG)

as a general circular sparse prior, for which the likelihood

function can be represented as

L
(

c,λd
)

=

N−1
∏

n=0

max
λd(n)≥0

1

πλd(n)
e
−

|d(n)|2

λd(n) ψ
(

λd(n)
)

, (4)

where ψ
(

λd(n)
)

is a scaling function which makes the dis-

tribution sparse. As shown in [11], the resulting negative log-

likelihood cost function is then given by

min
c,λd

N−1
∑

n=0

|d(n)|2

λd(n)
+logeλd(n)− logeψ

(

λd(n)
)

. (5)

In the following, the method that minimizes (5) will be referred

to as the CGG method [11].

C. Promoting sparsity through the sparsity term

Another approach to enforcing sparsity of the solution is to

incorporate an additional sparsity term in the cost function,

typically formulated as the first-order or zero-order norm on

the desired speech. In [12] the cost function consists of only

the sparsity term with a constraint which follows the LP-based

signal model (1), which reads

min
d,c

‖d‖w,1 subject to d + XD c = x, (6)

where ‖d‖w,1 =
∑N−1
n=0 w(n)|d(n)| denotes weighted ℓ1-

norm of vector d with nonnegative weights w = [w(0), ...,
w(N − 1)]T ∈ R

N×1
>0 . The constrained problem (6) can then

be solved using the so-called Alternating Direction Method of

Multipliers (ADMM) [12]. Thus the method that minimizes

(6) will be referred to as ADMM.

D. Sparse split Bregman method

In this section, we present a novel sparse dereverberation

method in which dereverberated speech is modelled using

sparse prior distribution. However, in addition, the sparsity

term is integrated into the second cost function in order to

ensure that obtained linear prediction based solution is indeed

sparse. The proposed optimization can be formulated by the

following two cost functions which are solved in an alternating

fashion

argmin
λd

dHD−1
λd

d + loge det{Dλd
} − loge det{Dψ(λd)} (7a)

argmin
d

dHD−1
λd

d + ‖d‖w,1 subject to d + XD c = x, (7b)

where Dλd
= diag{λd} denotes the diagonal matrix with

elements of vector λd on the main diagonal, and diagonal

matrix Dψ(λd) = diag{ψ(λd)} is defined analogously. Op-

timization (7a) follows directly from (5) and thus it has a

closed-form solution that is equivalent to the solution of the

CGG method [11]. On the other hand, optimization (7b) is

convex but nondifferentiable, and thus its closed-form solution

does not exist. To address this problem we use the so-

called split Bregman method [17] which enables to find the

solutions to two constrained sub-problems: (i) differentiable

problem corresponding to the first term in (7b) and (ii) the

nondifferentiable problem corresponding to the second term in

(7b), which are computed separately in an alternate fashion.

The optimum solution of the latter sub-problem can be found

using the so-called shrinkage operator [17] given by (8c). The

final update equations for the sparse dereverberation method

derived using the split Bregman approach are given by [14]

λ
(i)
d = max

{

|d(i−1)|2−p, ελ
}

, (8a)

c(i) =
(

XH
DD

−1
λd

XD +
α

2
XH
DXD

)−1

(

XH
DD

−1
λd

x +
α

2
XH
D

(

x − d(i−1) + µ(i−1)
)

)

,
(8b)

d(i) = Dh max
{

1−Dw(α|h|)
−1, Gmin

}

, (8c)

µ(i) = µ(i−1) −
(

d(i) − x + XD c(i)
)

, (8d)
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where vector h and matrices Dh and Dw in (8c) are given by

h = x − XDc(i) + µ(i−1), (9)

Dh = diag
{

h
}

, (10)

Dw = diag
{

(|h|+ ελ)
−1

}

. (11)

In the presented update equations i denotes the iteration index,

α is the penalty parameter for the constraint in (7b), µ denotes

the so-called auxiliary Bregman variable, ελ and Gmin denote

small real constants for algorithm robustness, and function

max{[·], ·} returns a vector with maximum values.

The presented sparse split Bregman (SSB) method can be

considered a generalization of the nonsparse WPE [7], sparse

CGG [11], and sparse ADMM [12] methods. In fact, the

update equations for WPE and CGG are given by (8a), (8b),

and update on d is obtained by reordering (1) with parameters

α = 0 and p = 0 for WPE and α = 0 for CGG. The ADMM is

obtained by removing the first term from (7b) and dropping the

cost function (7a), which yields (8b) with the first terms with

D−1
λd

in brackets removed, (8c) and (8d). Simplification of (8b)

for the ADMM allows for the computation of
(

XH
DXD

)−1
XH
D

outside the loop and leads to a significant computational

complexity reduction compared with the other three methods.

III. DNN-BASED SPEAKER VERIFICATION

In this section, we provide an overview of two network

architectures for speaker embedding extraction which are used

in speaker verification experiments, namely, the well-known

Time Delay Neural Network (TDNN) [15] and the modified

ResNet18 (mR18) proposed by the current authors in [16].

In both systems, the extracted embeddings undergo cosine

distance scoring (CDS) in order to avoid the impact of backend

adaptation on the overall systems’ performance.

A. TDNN-based speaker embedding

X-vectors are speaker embeddings extracted from a TDNN-

based architecture, which consists of 5 time-delay (TD) layers

that span over 15 time frames context of network input,

followed by a pooling layer that computes mean and standard

deviation [15]. Next the calculated statistics are propagated

through a fully connected layer followed by the output softmax

layer with the number of outputs equal to the number of

speakers in a training set. The x-vector embedding is extracted

from the output of the fully connected layer.

B. Modified ResNet18-based speaker embedding

The first layer of the modified ResNet18 [16] is the 2D

convolutional layer with filter size of 7x7 and downsampling

stride of 2x2. The next part of the network is composed of

4 main segments, each consisting of 2 ResNet blocks, where

each of the ResNet blocks is built of 2 convolutional layers

with identity shortcut connections. The convolutional layers in

the ResNet block have a filter size of 3x3, have an identical

output size and do not involve downsampling, except for the

first layer of each segment which has a stride of 1x2. The

output dimensions for each of 4 segments are {64, 128, 256,

and 512}. The output from the residual part is forwarded to

the statistics pooling layer which computes mean and standard

deviation of the feature vector obtained after ResNet segments

in the time dimension. The output of statistics pooling is fed

to the fully connected layer with output size of 512, followed

by a softmax output layer with dimension equal to the number

of speakers in the training set. Speaker embedding is extracted

as the output of the fully connected layer.

IV. PERFORMED EXPERIMENTS

In experiment 1, we evaluate the dereverberation perfor-

mance of sparse and nonsparse LP-based methods presented in

Sec. II. The microphone signals are obtained as a convolution

of 2620 nonreverberant speech files from the Librispeech test-

clean subset [18] with Room Impulse Responses (RIRs) gen-

erated using the image-source method [19]. To simulate rooms

with reverberation times (RT60) ranging from 0.4 to 1 s, we

randomly select room dimensions 5 - 10 m for the width and

length, 2 - 4 m for the room height, and appropriately adjust the

wall absorption coefficients from the range 0.1 - 0.5. In each

room, we generate RIRs for 5 random positions of the source

and a 2-element and 4-element circular microphone array with

random source-array distances of 1 - 2 m and inter-microphone

spacing of 0.2 - 0.3 m, respectively. Each evaluation result is

obtained by averaging over the results computed for all 2620

speech files, each convolved with a randomly selected RIR

simulated for a given RT60. As evaluation metrics we use the

Perceptual Evaluation of Speech Quality (PESQ) [20], the Fre-

quency Weighted Segmental Signal-to-Noise Ratio (WSNR)

[21], and the Cepstral Distance (CD) [21]. The presented

improvement values of ∆PESQ and ∆WSNR are calculated as

the differences between the output dereverberated signal and

the reverberant input signal at the reference microphone, whilst

the CD improvement (∆CD) is computed as a subtraction of

CDs for the input and the output signals.

In experiment 2 we investigate the influence of applying

a sparse dereverberation method on the accuracy of two SV

systems described in Sec. III. Both embedding extractors

are trained similarly as in the VoxCeleb Kaldi recipe, using

the entire VoxCeleb2 [22] and VoxCeleb1 [23] training part,

augmented only with environmental noise and music from the

MUSAN database [24]. In order to relate the SV results to

the results of experiment 1, the reverberant dataset is the same

in both experiments. Text-independent trials are generated so

that the first 4 speech samples from each chapter are used

for enrollment and reverberant samples for scoring. All in all,

the trial set contains 3068 target and 33024 nontarget trials.

Note that there are no cross-gender nontarget trials and no

semi-chapter target trials. Finally, note that the output signal,

i.e. after dereverberation, is computed using (1) with the filter

coefficients obtained in the last iteration of the algorithm.

For both SV systems, as input features to the DNN we use

64-dimensional log-Mel filter bank coefficients obtained from

25 ms frames with 10 ms overlap. Feature extraction is fol-

lowed by mean-normalization over the 3 s window and energy-

based Kaldi’s Voice Activity Detector [25]. We used two
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TABLE I
DEREVERBERATION PERFORMANCE OF THE WPE, ADMM, CGG, AND THE SSB METHODS IN TERMS OF CD, PESQ, AND WSNR IMPROVEMENTS

BETWEEN THE OUTPUT AND INPUT VALUES FOR SIMULATED DATA WITH 2- AND 4-CHANNEL SETUP (HIGHER VALUES INDICATE BETTER

PERFORMANCE). THE REFERENCE VALUES (FOR UNPROCESSED SIGNAL OF THE CLOSEST MICROPHONE) FOR PESQ, CD AND WSNR ARE {1.47, 1.28,
1.20 1.16}, {3.46, 4.25, 4.73, 5.08} AND {7.62, 4.84, 3.25, 2.24}, RESPECTIVELY, FOR RT60 EQUAL TO {0.4, 0.6, 0.8 AND 1 S}.

Measure ∆ PESQ ∆CD ∆WSNR
RT60 [s] 0.4 0.6 0.8 1 0.4 0.6 0.8 1 0.4 0.6 0.8 1
Num. ch. 2 | 4 2 | 4 2 | 4 2 | 4 2 | 4 2 | 4 2 | 4 2 | 4 2 | 4 2 | 4 2 | 4 2 | 4

WPE 0.59 | 0.65 0.51 | 0.58 0.40 | 0.51 0.34 | 0.48 0.98 | 1.08 1.21 | 1.32 1.24 | 1.42 1.23 | 1.56 4.35 | 5.02 5.04 | 5.78 4.86 | 5.91 4.70 | 6.27
ADMM 0.55 | 0.55 0.47 | 0.50 0.38 | 0.43 0.30 | 0.38 0.80 | 0.77 0.99 | 1.08 1.07 | 1.19 1.09 | 1.31 3.44 | 3.22 3.85 | 4.03 3.94 | 4.28 3.74 | 4.30
CGG 0.68 | 0.70 0.63 | 0.69 0.53 | 0.62 0.44 | 0.59 1.15 | 1.21 1.41 | 1.50 1.44 | 1.60 1.43 | 1.75 4.51 | 5.23 5.29 | 6.33 5.16 | 6.59 4.96 | 6.95
SSB 0.81 | 0.84 0.73 | 0.79 0.61 | 0.72 0.52 | 0.69 1.18 | 1.26 1.46 | 1.55 1.51 | 1.67 1.52 | 1.84 4.95 | 5.59 5.69 | 6.55 5.50 | 6.71 5.22 | 6.95

(a) mR18, 2-mic (b) mR18, 4-mic (c) TDNN, 2-mic (d) TDNN, 4-mic

Fig. 1. SV performance for the mR18 (a,b) and the TDNN (c,d) systems with a 2-channel (a,c) and 4-channel (b,d) dereverberation as front-end processing
for RT60s equal to 0.4, 0.6, 0.8, and 1 s (lower values indicate better performance). Unprocessed reference values are reported at the top of the bar plots.

evaluation metrics, namely the Equal Error Rate (EER) and

the minimum value of the Detection Cost Function (minDCF),

which is computed for parameters Cmiss = Cfa = 1 and

Ptar = 0.01.

Dereverberation is performed in the STFT domain with

20 ms frame length and 10 ms hop multiplied by a Hamming

window, whilst half-rectangular Tuckey window is used in the

ISTFT synthesis. As reference microphone (at which input

metrics are computed), we select the microphone that is the

closest to the source. The filter length is set according to

the empirically found formula Lc = 50 · RT60 (halved for

4-element array) and prediction delay is set to D = 1.

The parameters for ADMM and the proposed SSB method

are empirically adjusted using a small subset of simulation

data. The parameters of the proposed SSB method are set as

α = 0.01, Gmin = 0.06, and p = 0.5. Referring to notation in

equations (15), (19) and (22) in [12] we set the parameters for

ADMM method as Gmin = 0.04, ρ = 1, ε = 10−10 and γ = 1,

while the weights are estimated using formula (19) from [12].

For the CGG and SSB methods, parameter p is set to 0.5,

as in [11]. All methods are initialized with c = 0MLc×1,

µ = 0N×1 and d = x. Alternating update loop is finished

either when the maximum number of 20 iterations is reached

or the convergence condition ||d̂
(i)

− d̂
(i−1)

||2 < 10−3 is met.

V. RESULTS AND DISCUSSION

Table I presents the results of experiment 1, in which we

compare the dereverberation performance of three existing

methods, namely of the nonsparse WPE, sparse CGG, sparse

ADMM, and the sparse SSB method in terms of signal

enhancement for different reverberation times in simulated

rooms. The results show the differences between values ob-

tained for the dereverberated signal and the unprocessed signal

at the microphone closest to the source.

As can be observed, all four methods successfully reduce

reverberation. Among the compared approaches, the SSB

method introduces the strongest reverberation suppression for

all examined rooms and evaluation measures. Specifically, the

improvements achieved by SSB are 37%-53%, 20%-24% and

11%-13% over the improvements obtained with the nonsparse

WPE method for ∆PESQ, ∆CD and ∆WSNR, respectively. In

relation to the second-best performing CGG, the SSB method

achieves significant 14%-20% improvement for ∆PESQ and

slight gain of up to 6% and 10% for ∆CD and ∆WSNR,

respectively. In contrast, the third sparse technique referred

to as ADMM does not succeed in preserving the quality of

speech in the output signal, which can be seen in all evaluation

measures, which may be attributed to the lack of the first term

in cost function (7b).

Increasing the number of channels brings about a significant

performance gain regardless of the dereverberation technique.

Note that for the best performing techniques, namely the

SSB and CGG, an improvement is less pronounced when

increasing the number of microphones in comparison with

the nonspare WPE method, which achieves even 41% and

27% of relative improvement at RT60 = 1 s in CD and PESQ

score. These results clearly show the superiority of the sparse

approaches which provide very good dereverberation even for
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a low number of microphones.

Figure 1 reports the performance of two speaker verification

systems, namely the mR18 and the TDNN, evaluated using

the unprocessed signals and the signals dereverberated with

the nonsparse WPE and three sparse methods for the 2- and

4-channel scenarios. Note that for clean (nonreverberant) data

and the used trial set, the mR18 and the TDNN systems obtain

the vanilla EER / minDCF of 1.27% / 0.188 and 1.60% / 0.239,

respectively. Thus in general the modified ResNet-based sys-

tem provides slightly lower errors than the TDNN-based

system. As can be observed in Fig. 1, there is a clear, high

gain in speaker recognition performance in both minDCF and

EER when any dereverberation method is applied. Among

the dereverberation techniques, the SV accuracy is always

better for the SSB algorithm than for the nonsparse WPE

and the sparse ADMM algorithms, while it achieves slightly

better results than CGG for the vast majority of investigated

scenarios. A general conclusion can be made that two sparse

methods always outperform the nonsparse WPE, while the

ADMM algorithm, with a slight speech signal degradation,

is not a good choice among the LP-based dereverberation

techniques for distant speaker verification.

For both SV systems, an improvement in EER and minDCF

is more apparent for higher reverberation times, which is

similar to the trend of the CD and the WSNR improvements

presented in Table I. The highest relative improvement of 57%

and 56% in terms of EER compared with the unprocessed

signals is observed for the mR18 system with dereverberation

using the sparse SSB method at RT60 equal to 0.8 s and 1 s,

respectively. Similarly, the gain offered by 4-channel over the

2-channel pre-processing is more clearly exhibited at high

RT60 values. For instance, a relative improvement of 23%

can be observed for the 4-channel dereverberation over the

2-channel case for mR18 system with SSB preprocessing and

RT60 of 1 s. Finally note that the benefits of sparse processing

as well as using more signals in multichannel LP-based dere-

verberation are more significant at high reverberation times.

VI. CONCLUSIONS

In this paper, we have evaluated the application of several

sparse and nonsparse LP-based dereverberation methods for

signal enhancement in reverberant environments with the aim

to preprocess the microphone signals for subsequent speaker

verification. The results of experiments have shown that sparse

methods offer significant gain over the typically used non-

sparse counterpart in both studied tasks. In particular, we have

shown that the novel SSB method performs particularly well.
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O. Novotný, and O. Glembek, “Analysis of BUT Submission in Far-
Field Scenarios of VOiCES 2019 Challenge,” in Proc. Interspeech, 2019,
pp. 2448–2452.

[10] T. Y. Chong, K. M. Tan, K. K. Teh, C. H. You, H. Sun, and H. D. Tran,
“The I2R’s ASR System for the VOiCES from a Distance Challenge
2019,” in Proc. Interspeech, 2019, pp. 2458–2462.
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