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Abstract—Recently, several neural time-domain speech denois-
ing and speech separation approaches have been investigated
in literature, considerably progressing the state-of-the-art in
the field. Among these methods, Wave-U-Net is particularly
appealing because it allows an integrated modelling of the
phase information and can handle large temporal contexts. In
this paper, we present an evolution of the original Wave-U-Net
architecture, that features a deeper model with exponentially
increasing dilation rate from layer to layer in the downsampling
blocks.

Experiments on a contaminated version of Librispeech show
that the proposed architecture outperforms the original one
in terms of intelligibility metrics. In addition, we evaluate the
performance of the proposed enhancement scheme on a simple
intent classification task based on a noisy version of the Fluent
Speech Commands dataset. Results show that, also in this case,
the proposed method outperforms the baseline and substantially
improves the classification accuracy in noisy conditions.

Index Terms—Intent classification, Speech Enhancement, Deep
Learning

I. INTRODUCTION

The term Spoken Language Understanding (SLU) is con-
ventionally related to the task of identifying an intent, or,
more generally, extracting meaning from a spoken utterance
[1]. This is important for many applications such as voice
user interfaces (e.g for implementing spoken virtual assistants,
chatbots, etc) and smart home applications, in which the
speaker’s intent has to be converted into an action. According
to scientific literature, an intent is represented as a set of
conceptual slots [2]. In smart home applications (which is the
domain addressed in this paper), an utterance like ”switch on
two lamps in the living room” might correspond to an intent
represented with the following filled slots: action: ”switch”,
type:”lamp”, count:”two”, place:”living room”.

Recently, end-to-end (E2E) SLU approaches got a lot of
attention. In these approaches, a single model is trained to map
the speech signals directly into the speaker intents without any
intermediate phases [3]–[6], namely conversion from audio
to text with automatic speech recognition (ASR). Basically,
E2E models optimize the intent recognition accuracy directly,
reducing both model size and error propagation.

However, as in ASR applications, noise and other distortions
significantly aggravate the quality and intelligibility of the
speech signals, producing a negative effect on the intent
classification performance [7]. One way to alleviate the impact

Fig. 1. Proposed system for Speech Enhancement for Intent classification

of noise in the speech signals is to train, or adapt, the model
on matching noisy data [8] or to resort to data augmenta-
tion strategies [9]. However, training models in all possible
conditions is not always feasible. An alternative approach is
to use a speech enhancement front-end, that improves the
speech quality and intelligibility by reducing the effects of
the interfering signals. Although today speech enhancement
components are employed in many applications (e.g. mobile
communication systems, headphones, voice over IP, ASR, etc),
this research area still presents several open issues.

In this paper we experiment with a pipeline that integrates
a time domain neural speech enhancement component with
an E2E intent classification model, as depicted in Fig. 1.
More in details, we introduce an improved version of the
Wave-U-Net: a deep learning speech enhancement front-end
[10] which is an extension of the model introduced for
audio source separation in [11]. In addition, we exploit a
convolutional deep neural network with residual layers (see
section IV) as intent classification model which achieves state-
of-the-art performance. Finally, we experiment with a multi-
task learning framework which improves the robustness of
the intent classification against out-of-vocabulary sentences by
disjointly predicting the elements of intents.

II. SPEECH ENHANCEMENT: RELATED WORKS

In literature, many techniques based on statistical assump-
tions have been proposed for reducing the noise in audio
signals [12]. Classical algorithms, such as spectral subtrac-
tion [13], [14], analyze the relation between speech sig-
nals and noise based on statistical assumptions. Typically,
these techniques operate on the short-time Fourier transform
(STFT), and use a frequency bin-wise gain function, derived
from specific model assumptions for speech or noise signal
distributions [14], [15]. These bin-wise functions often rely
on an a-priori estimation of the signal-to-noise ratio (SNR)
[16], [17], or of the noise power [18], [19]. The underlying
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assumption in most of these approaches is that noise is more
stationary than speech in a given temporal segment. Therefore,
these techniques are effective when applied to highly noisy
environments or in case of stationary noise [20], but their
performance degrades in presence of non-stationary noise [21].

Unlike classical approaches, in supervised deep learning a
Deep Neural Network (DNN) is trained using pairs of clean
and noisy speech signals without any statistical assumptions
[22], [23]. Many of these techniques operate using the STFT,
either estimating the clean signal magnitude [24], [25], the
ideal ratio mask (IRM) [26], [27] or complex ratio masks [28].
The main drawback of these approaches is that they reconstruct
the magnitude, while phase remains noisy. In addition, masks
often introduce artifacts which may affect the signal quality as
well as the performance of following processing components.

As an alternative to approaches operating in the frequency
domain, several techniques working in the time domain have
emerged recently [10], [29]–[31]. The major advantage of
time domain approaches with respect to the frequency domain
ones, is that they can mitigate the phase estimation problem,
which improves the speech quality and intelligibility [32].
One example is SEGAN [30], which was the first attempt
to employ generative adversarial networks (GAN) for speech
enhancement. In [33], inspired by the performance of fully
convolutional networks, the authors propose U-Net: a model
that maps the noisy signal to its corresponding clean sig-
nal based on raw waveform directly. This model was later
improved towards Wave-U-Net, that was firstly proposed in
[10] for audio source separation, achieving promising results
in comparison with other classical (e.g. Wiener filtering and
spectral subtraction) and deep learning based methods (e.g.
GANs).

III. PROPOSED APPROACH

A. Wave-U-Net

Wave-U-Net operates directly on time domain speech sig-
nals. Typically, this model consists of a series of fully convo-
lutional downsampling blocks, followed by a bottleneck 1-D
convolutional layer and, finally, by a series of fully convo-
lutional upsampling blocks with skip connections from the
downsampling to the upsampling blocks. In the downsampling
blocks, a number of higher level features are computed on time
scales, then are concatenated with the local, high resolution
features computed from the same level upsampling block. This
concatenation results into multi-scale features for predictions.

Suppose that a mixture of noisy signals y[n] ∈ [−1, 1]L×C

is input to Wave-U-Net, where C is the number of speech
channels and L is the number of audio samples. The network
is trained to separate these mixture signals into K source
waveforms, related either to clean speech, i.e. x1, . . . , xK

with xk ∈ [−1, 1]L×C , or noise. In case of monaural speech
enhancement, i.e. when K = 1, although it is possible to
retrieve the noise, we are only interested in the clean speech
signal x1[n]. Fig.2 shows the entire architecture of a Wave-U-
Net model.

Fig. 2. Architecture of the Wave-U-Net model [34]

B. Dilated Encoder Wave-U-Net

The proposed modified model has the same architecture of
the basic Wave-U-Net Recently, dilated convolution showed
promising results with time series, demonstrates that,using
dilated convolution captures the long-term information, with-
out increasing network complexity [35], [36]. In particular
we increase the model adding a fourth downsampling and a
fourth upsampling blocks. Each downsampling block consists
of three 1D convolutional layer with kernel size = 15, stride
= 1, padding = 7, 14, 28, while the padding in the original
Wave-U-Net is constant and equal to 7. As the original Wave-
U-Net is not dilated i.e. dilation rate = 1, in this model we
increase the dilation rate exponentially from layer to layer i.e.
(1, 2, 4). Each convolutional layer is then followed by 1D-
Batch normalization layer followed by leaky ReLU activation
function with negative slope equals to 0.1. The bottleneck layer
is a 1D convolutional layer with kernel size = 15, stride =
1 and padding = 7. The network right side consists of four
upsampling blocks with the same number of layers as in the
downsampling blocks, but without dilation. Finally, on the top
of the network the output layer, which is a 1D convolutional
layer with kernel size = 1 and stride = 1 followed by Tanh
activation function, produces the enhanced audio samples.

IV. BACK-END: INTENT CLASSIFICATION ON FSC

We evaluate the impact of the proposed speech enhancement
scheme on an intent classification task. Intent classification
(IC) is a functionality of SLU, which enables the interpretation
of the information transmitted by speech signals. The goal
of an IC task is the selection of the intent encoded in a
spoken utterance from a closed set of categories [1], [5].
This task is closely related to dialogue-based natural language
understanding, where the speaker does not need to use a
predefined set of commands in order to successfully convey
the desired intention.
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Fig. 3. Intent classification on FSC

Recently, E2E approaches predicting the intent directly
from the audio signal have been proposed [37], [38]. In
general, these approaches are rather articulated. In [37], an
E2E model is obtained by combining the word posteriors
of a pre-trained acoustic modeling with an NLU model. A
similar strategy is used in [39], where a pre-trained language
model is employed to improve the performance. Nevertheless,
solutions that attempt to directly classify the intent using a
single, eventually pre-trained, classifier have been appearing
lately. Examples are: [3]; [40], where a transformer model is
used; [41], which implements a recurrent architecture trained
with a reptile strategy and [42].

A. Fluent Speech Command

The Fluent Speech Commands (FSC) dataset [37] con-
tains 30,043 utterances in English from 97 native and
non native speakers interacting with smart-home devices
or communicating with virtual assistants (e.g. “turn on the
heat”, “switch on lights”, etc). All the signals are recorded
as 16 kHz single-channel audio files. Overall, 248 differ-
ent utterances are available in the dataset. Utterances are
mapped into 31 different intents consisting of three items:
action, object and location. For example, ”switch on the
light” is labelled as: {action: "activate", object:
"lights", location: "none"}. In total, 6 different
actions, 14 objects and 4 locations are included in the dataset.
The combination of these three slots represents the intent of
an utterance. On average, for each intent 8 different utterances
are present in the dataset. We use the official partitions: 23,132
utterances for training, 3,118 for validation and 3,793 for test.

The state of the art on clean speech for this dataset is around
99% intent classification accuracy [3], [37], [40], [41].

B. Intent Classification Model

Given the structure of the FSC data, we follow the same
approach as in [3], [40], [41] and consider an E2E multi-class
intent classification task which maps each utterance directly
into one of the 31 possible intents. Fig. 3 shows a graphical
illustration of the IC system.

Our model is based on the architecture of the encoder of
Conv-TasNet, originally introduced for speech separation [43].
The network inputs are 40-Mel filter banks computed on a
20ms window, with 10ms step. The signals are limited to
4 seconds. The model consists of a normalization layer and
1D convolutional layer, that maps the 40 Mel features into

Fig. 4. Joint and disjoint intent classification strategies on FSC

64 channels for bottleneck features, followed by 2 blocks
of 5 residual blocks with 1-D dilated convolutions and skip
connections. Each residual block has the same structure, with
increasing dilation factor. We use 128 channels for the depth-
wise separable convolutional layers.

We consider two classification strategies: joint classification,
where the model outputs are the 31 logits associated to the
intents; disjoint classification, where the three items of an
intent are handled independently [44]. The latter is a multi-
task learning approach, implemented by splitting the final
classification layer in 3 as shown in Fig. 4. During inference,
the three predicted objects are combined to form the predicted
intent. On one hand, this is a more difficult task as it allows
the prediction of non-existing intents when joining the three
parts. On the other hand, it is expected to be more robust in
case of out-of-vocabulary utterances (e.g. ways to express an
intent not available in the training set) or in case unseen intents
are present in the test set.

V. EXPERIMENTAL RESULTS

The speech enhancement component is trained on a con-
taminated version of Librispeech-100 [45], which includes 100
hours of English read speech recorded 16 kHz. We randomly
selected 10 speakers, resulting in approximately 10 hours of
clean speech signals. The noisy signals are obtained by adding
noise from the Microsoft Scalable Noisy Speech Dataset (MS-
SNSD) [46], which provides noise sounds from 25 categories,
e.g Air Conditioner, Bubble, and Cafe noise. The Librispeech
dataset is contaminated randomly selecting for each file one
out of five different SNRs: 5dB, 7.5dB, 10dB, 12.5dB and
15dB [47]. The dataset was divided into 6 hours for training,
2 hours for training and 2 hours for testing. The FSC dataset
is also contaminated in the same way, by adding noise from
MS-SNSD and using the same SNR range plus -5dB and 0dB.

Both the stock Wave-U-Net model [48] and the modified
model are trained based on the noisy version of Librispeech-
100 dataset. The network inputs are the mixture speech signals
while the training targets are the clean speech signals. Due to
the signals length variation, they are chunked taking 16384
continuous samples randomly selected from the noisy and
clean signals. Both models are trained using Adam optimizer
with learning rate =10-4, decay rates β1 = 0.9 and β2 = 0.999.
The batch size is 10 and the Leaky ReLU activation function
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TABLE I
PESQ, STOI, AND SNR OF THE WAVE-U-NET MODELS USING

LIBRISPEECH AND FSC DATASETS

Data sets PESQ STOI SNR
Unproc. 1.30 0.70 11.52

SE-GAN [30] 1.85 0.72 11.71
Librispeech Wave-U-Net [48] 2.13 0.76 13.42

Dilated Wave-U-Net 2.37 0.78 13.95
Unproc. 1.79 0.62 8.68

SE-GAN [30] 2.15 0.64 11.35
FSC Wave-U-Net [48] 2.68 0.67 11.06

Dilated Wave-U-Net 3.09 0.73 11.30

is used with negative slope α = 0.1. Moreover, both models
are trained using the mean square error (MSE) loss function.
In inference, signals are split in 16384 sample long chunks,
which are then re-concatenated once enhanced.

A. Speech Enhancement Results

The performance of the enhancement process is evaluated
using a set of traditional intelligibility metrics: PESQ, STOI,
and SNR. PESQ uses the wide-band version recommended in
ITU-T, and its range lies between (-0.5 to 4.5) [49]. STOI is
based on a correlation coefficient between time-aligned clean
and enhanced signals, and its range is from 0 to 1 [50]. SNR
measures the level of the desired signal with respect to the
level of background noise and its unit is in dB [51].

Table I reports the results on the contaminated Librispeech-
100 and FSC datasets using both the original Wave-U-Net
model as implemented in [48] and our proposed deeper dilated
Wave-U-Net. We also consider a SEGAN implementation as
baseline [30]. For Librispeech, scores are computed on the 2-
hours official testing partition. Conversely, for FSC we used
the whole dataset (as the models are trained on the librispeech-
100 training set). In both datasets the modified Wave-U-Net
model outperforms the original Wave-U-Net model as well
as SEGAN in all three metrics. Although in terms of SNR
the improvement is very small and probably negligible form a
statistical point of view, PESQ and STOI are clearly improved,
in particular for the FSC dataset, indicating that the deeper and
dilated network not only removes noise but also preserves the
spectro-temporal properties of the signals.

B. Intent Classification

Finally, we evaluate the performance of the proposed en-
hancement strategy in terms of intent classification accuracy,
which is measured as the actual match between the predicted
intent slots and the ground-truth ones [37]. Table II reports
the classification accuracy when applying the model trained
on clean data to clean, noisy and enhanced signals. First of
all, note that our best performance (98.8%) accuracy is in
line with the current state-of-the-art. Therefore we can claim
that our back-end model is sufficiently solid. Although the
baseline Wave-U-Net improves the signal quality in terms of
intelligibility metrics (as in Table I), it brings only a marginal
improvement to the performance of the intent classifier with
respect to the noisy data. Conversely, the proposed dilated

models provides a clear improvement lifting the classification
accuracy from 61.1% to 77.7%. Considering the two training
strategies, the ”joint” approach is in general better, as expected,
but the gap with the ”disjoint” approach is not that wide.

TABLE II
INTENT CLASSIFICATION ACCURACY ON FSC, USING CLEAN, NOISY AND

ENHANCED SIGNALS. MODELS ARE TRAINED ON CLEAN DATA

Full Data 50% out of voc.
Evaluation Data Disjoint Joint Disjoint Joint

Clean 98.3% 98.8% 88.1% 84.8%
Noisy 63.2% 61.1% 42.3% 41.6%

Wave-U-Net [48] 61.6% 64.2% 50.4% 47.7%
Dilated Wave-U-Net 75.3% 77.7% 65.1% 62.5%

To evaluate the generalization capabilities of the proposed
model, we consider an experimental set up where 50% of the
utterances for each intent are removed from the training set.
Therefore, for each intent an average of 4 utterances out of 8 in
the test set haven’t been seen in training. This 50% is randomly
selected and results are averaged on the two halves. Results
are reported in the right-end part of Table II. In this case,
obviously we observe a performance reduction with respect
to using the full dataset. Speech enhancement is providing
similar improvements as for the full data case. Note that the
disjoint classification strategy provides a small but consistent
improvement with respect to the joint approach. This confirms
our hypothesis on the fact that predicting disjointly the three
components of the intent helps in case of unseen utterances.

VI. CONCLUSION

In this paper, we propose a speech enhancement front-end
module based on a dilated version of Wave-U-Net. We used
the enhancement module as a pre-processing stage for intent
classification in noisy conditions. In particular, we showed that
our speech enhancement not only improves the signal quality
in terms of intelligibility metrics but it also improves the intent
classification accuracy on a contaminated version of the Fluent
Speech Command corpus.

A natural extension of the proposed approach is joint train-
ing of speech enhancement and intent classification models. In
particular, the key idea is to concatenate the speech enhance-
ment model with the intent classification one and jointly adjust
their parameters. This way, the intent classification model can
guide the enhancement front-end to provide more suitable and
more discriminative enhanced signals.

In the future, we plan to test the proposed intent classifi-
cation model on different datasets and languages (e.g. ATIS
[2], Almawave-SLU [52], SLURP [53]). We also intend to
experiment on other SLU related tasks, such as dialog act
recognition and slot filling.
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