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Abstract—We investigate the viability of a variational U-Net
architecture for denoising of single-channel audio data. Deep
network speech enhancement systems commonly aim to estimate
filter masks, or opt to work on the waveform signal, poten-
tially neglecting relationships across higher dimensional spectro-
temporal features. We study the adoption of a probabilistic
(variational) bottleneck into the classic U-Net architecture for
direct spectral reconstruction. Evaluation of several ablation
network variants is carried out using signal-to-distortion ratio
and perceptual measures, on audio data that includes known
and unknown noise types as well as reverberation. Our experi-
ments show that the residual (skip) connections in the proposed
system are a prerequisite for successful spectral reconstruction,
i.e., without filter mask estimation. Results show, on average,
an advantage of the proposed variational U-Net architecture
over its classic, non-variational version in signal enhancement
performance under reverberant conditions of 0.31 and 6.98 in
PESQ and STOI scores, respectively. Anecdotal evidence points
to improved suppression of impulsive noise sources with the
variational U-Net compared to the recurrent mask estimation
network baseline.

Index Terms—Speech enhancement, U-Net architecture, vari-
ational autoencoder, deep learning, audio source separation

I. INTRODUCTION

Speech in real-world environments is inevitably distorted
by background noise, reverberation, or competing speakers,
resulting in degraded speech intelligibility, and decreased per-
formance in applications such as automatic speech recognition
[1] and speaker identification [2]. Speech enhancement is used
to improve signal to noise ratio (SNR), thus increasing speech
quality.

Recent approaches leverage non-linear modeling capabili-
ties of deep networks and are effective in realistic environ-
ments that include non-stationary noise and varying acoustic
characteristics. These methods commonly follow two ap-
proaches, generating filter masks or directly mapping the noisy
mixture to enhanced speech, the latter being referred to as end-
to-end systems.

Large deep networks predominantly use log-power spectra
with an extended temporal context to learn features best
representing clean speech [3], [4]. In contrast, the compara-
tively smaller auto-encoder (AE) models favor more compact
features such as Mel-frequency power spectra [5] and short
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term Fourier transform (STFT) spectra computed across short
utterances [6]–[8] or small temporal contexts [9]. Several state-
of-the-art networks focus on using deep architectures directly
on the time domain signals to generate ideal filter masks based
on self-learned speech representations, e.g., [10], [11], where
each mask corresponds to one target speaker.

The present work’s main contribution is to propose and
study the variational U-Net architecture for speech enhance-
ment, which, to the best of our knowledge, has not been
used for acoustic signal processing previously. We hypothesize
that the inclusion of a probabilistic bottleneck into the U-Net
architecture increases robustness towards out-of-distribution
effects, such as unknown noise types or reverberation. We
investigate the performance of the proposed model, as well
as several ablated versions thereof.

II. VARIATIONAL U-NETWORKS

A. Variational U-Net Architecture

The U-Net architecture [12], originally proposed for
biomedical image segmentation, has recently been used for
audio source separation tasks [13]–[15]. It has been adapted
for speech enhancement through the addition of dilated convo-
lutions [10]. Filter mask generation with a dilation U-Net has
been shown to perform better than without dilation, indicating
the usefulness of dilation in such a network. In computer
vision, the U-Net architecture has successfully been combined
with the probabilistic modeling found in variational auto-
encoders (VAE) for image segmentation tasks [16]–[18]. The
variational approach replaces the deterministic bottleneck with
a generative Gaussian model.

We propose to combine the dilation U-Net with a VAE
approach and leverage them for speech enhancement. Addi-
tional information contained in a U-Net’s residual connections,
the across-frequency and -time relations found by dilated
convolutions, and the robustness towards out of distribution
effects of a variational approach are advantageous for real
world applications. By moving in a modular fashion from the
standard VAE to the proposed system (cf. Fig. 1), we study
the impact each step has w.r.t. perceived sound quality.

B. Network Description

The general architecture of encoder and decoder follows
the conventional U-Net structure, but incorporates dilated
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(a) Variational autoencoder (VAE)

(b) Variational U-Net

Fig. 1. Model architectures of (a) the VAE and (b) the variational U-Net
which includes the residual connections characteristic for U-Nets, and dilated
convolutions. N denotes the depth of the encoder/decoder hierarchy.

convolutions as well as a variational Bottleneck, therefore
named DVUNET. The operations are consolidated into differ-
ent “Down” and “Up” blocks, cf. Fig. 1. Each block (Fig. 3)
in the proposed model uses one layer of dilated convolutions
implemented as depthwise separable convolutions [19] with a
3-by-3 kernel. A copy of each block’s output is linked to the
corresponding decoder layer, while max-pooling is applied to
the original output before going into the next encoder layer.
In the bottleneck (Fig. 2), the encoded features are linearly
transformed before their dimensioniality is reduced, improving
training stability on our variational models. The Gaussian
parameters (mean value µ, standard deviation σ2) are obtained
via two linear layers. Finally, another linear layer upsamples
from the bottleneck to create a tensor of the same size as
the output of the encoder. The subsequent decoder blocks
include transposed convolutions, that are learned upsampling
operations, with 2-by-2 kernels and a stride of 2. Before each
upsampling, the residuals from the encoder are concatenated

to the input of a decoder block along the channel axis. As this
increases channel dimension, two 3-by-3 convolutions are used
to reduce the number of channels while keeping the doubled
feature dimension.

Ablation models are named after their architecture, i.e., they
are based on our DVUNET architecture but with selected
parts removed. As such, taking away the variational bottleneck
from the DVUNET is abbreviated DUNET. Further removing
the dilated convolutions results in the UNET. Removing the
residual connections from DVUNET creates the DVAE model,
i.e., a VAE with dilations. Removing the variational bottleneck
from the VAE results in the convolutional auto-encoder (AE).

C. Loss Function Formulation

Speech enhancement can be done either in the spectral
domain or on the waveform of the acoustic signal. We chose
spectral features, as it would require a deeper, larger, network
to learn appropriate speech representations directly from the
audio signal. Thus we define our goal as the reconstruction of
a clean spectrogram from a noisy one.

Starting in the spectral domain, the input signal X(k),
including speech Xs(k) and noise Xn(k) components, is given
by

X(k) = Xs(k) +Xn(k). (1)

Let S(k), Ss(k) and Sn(k) denote respective log-power
spectra, with S(k) being the input of our model and Ss(k)
the training target. The mean-squared error (MSE) is used as
the reconstruction metric of the spectrogram and expressed as

LMSE = E
[
‖Ss(k)− Y (k)‖2

]
(2)

where Y (k) denotes the enhanced spectrum at the output of
the network.

The VAE related loss, the KL-Divergence, described as
DKL(Q(z|S)‖P (z)) [20], minimizes the distance between the
latent space encoding z computed by the encoder Q(z|S) of
the model, while the decoder estimates the generative model
P (Y |z) under a Gaussian prior P (z) assumption. Balancing
the mean-squared error against the KL-divergence with the
weight wKL lets us formulate the overall training metric as

L = LMSE + wKL ·DKL. (3)

III. EXPERIMENTS

A. Data

Datasets for training and testing are generated with the
scripts and audio files provided within the Deep Noise Sup-
pression Challenge 2020 [21]. Target speech is normalized on
a per utterance basis, noise added to each utterance is scaled
to SNR randomly chosen from 21 SNR levels in the range 0 to
20 dB SNR. The speech and noise files are randomly selected
and mixed to create noisy utterances. All audio files are 30
seconds long and sampled at 16 kHz.

Log-scaled power spectra are computed with a 1024-point
STFT, Hann window of length 25 ms, and window-shift
6.25 ms. Training sets of duration 1 hour, 15 hours, and
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(a) Variational bottleneck

(b) Linear bottleneck

Fig. 2. Variational and deterministic bottleneck architectures.

Fig. 3. Detailed view of the encoder/decoder block pairs. The encoder (left)
shows the depthwise separable convolution scheme.

100 hours, and a validation set of 2 hours are used during
training and model selection. The test set of length 10 hours
is used across all experiments, irrespective of training dura-
tion. To study the effect of reverberation during testing, we
employed an additional test set of length 25 minutes with and
without reverberation; data also included in the Deep Noise
Suppression challenge. Note that no reverberation was present
in any training set.

B. Network Configuration

Input and output of the network are given by a spectrogram
patch of length 3.2 s, representing log-scaled spectro-temporal
magnitude in 512 time frames and 512 frequency bins. During
training, data are presented in mini batches of 16 spectrogram
patches. The model’s N = 9 encode/decoder block pairs
(Fig. 1b and Fig. 3) operate with channel dimensions (64, 128,
256, 512, 1024, 1024, 1024, 1024, 1024) in subsequent levels
of the processing hierarchy, while simultaneously reducing
feature size from (512× 512) at input/output to (1× 1) at the
bottleneck in steps of factor 1/2. Bottleneck size is 256 with
the bottleneck distribution modeled by a diagonal Gaussian
with 256 mean and variance parameters. Implementation of
the variational bottleneck uses the standard reparameterization
approach [20]. Dilations across hierarchical levels scale with
the block number, starting at 1 (no dilation) and increasing up
to N = 9.

TABLE I
PERFORMANCE (SI-SDR) IN DEPENDENCE ON TRAINING SET LENGTH

AND MODEL CHARACTERISTICS (V: VARIATIONAL, U: U-NET, D: DILATED
CONVOLUTIONS). IDENTICAL 10H TEST SET IN ALL CONDITIONS.

Algorithm SI-SDR [dB] on 10h test set
training duration

Model Struct. #Param. 1h 15h 100h
DVUNET V+U+D 134 M 14.38 ± 0.03 15.90 16.68
DUNET U+D 133 M 14.39 ± 0.03 15.99 16.70
UNET U 146 M 14.53 ± 0.02 16.08 16.51
DVAE V+D 44 M 8.06 ± 0.11 8.69 8.84
VAE V 56 M 8.37 ± 0.06 9.16 9.20
AE ./. 56 M 9.74 ± 0.01 12.77 13.25
baseline ./. ./. 10.52 10.52 10.52
input data ./. ./. 9.98 9.98 9.98

C. Training

Training uses the adam optimizer with learning rate 0.001
and learning rate warm-up for the first 100 batches of the
15 h and 100 h training sets, while the 1 h training set uses a
static learning rate of 0.001. Maximum training epochs is set
to 200 epochs and validation loss is evaluated ten times (100 h
training set), twice (15 h training set), and once (1 h training
set) per epoch, respectively. Validation-based early stopping
terminates training after 10 non-improving epochs. Model
performance variability is determined for the 1 h training set
with 10-fold cross-validation. Resulting mean and standard-
error-of-the-mean values for test set performance are reported
in Table I, indicating that training variability is comparably
small.

D. Evaluation Setup

We evaluate speech reconstruction quality in terms of the
scale-invariant signal to distortion ratio (SI-SDR, [22]) on the
10 h test set for all model variants and the three training set
sizes as shown in table I. The baseline model from the deep
noise suppression challenge [9] is based on a recurrent neural
network and is available as a pre-trained model that has been
trained in a mixed-SNR condition on five different SNRs in the
range from 0 dB to 40 dB, i.e., no re-training of the baseline
system was possible. Therefore, we note that identical baseline
performance numbers are reported irrespective of the size of
the training set that our models were trained on.

Objective measures of speech quality and the generalization
from non-reverberant training to reverberant testing conditions
are shown in table II. Speech quality was evaluated in terms of
the perceptual evaluation of speech quality (PESQ) and short-
time objective intelligibility (STOI) measures. Reverberant and
non-reverberant test data were obtained from the 25 min. long
reverberation test set of the deep noise suppression challenge.

Time-domain reconstruction of audio signals for evaluation
was performed by combining the log-magnitude spectrogram
of the network output with the original phase of the noisy
input signal spectrogram.

IV. RESULTS & DISCUSSION

Speech reconstruction quality (SI-SDR, table I), overall,
increases towards larger training sets, as expected for models
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(a) Input audio spectrogram (b) DVUNET output

(c) Spectrogram of DVUNET enhanced signal (d) Spectrogram of baseline enhanced signal

Fig. 4. Example of input and enhanced spectra from test data with reverberation. (a) Noisy, reverberant input signal. Noise dominated by bird chirping, as
is visible from about 1.5 s onwards. (b) Spectral reconstruction produced by variational U-Net with dilated convolutions (DVUNET), showing finer spectral
structures and less noise than the final audio signal shown in (c). (c) Spectrogram of enhanced time-domain audio signal produced by DVUNET output
together with the noisy input phase, retaining more residual chirp sounds. (d) Spectrogram of reconstructed audio signal enhanced by the baseline system.

with millions of parameters. Model architectures that include
a U-Net component (UNET, DUNET, DVUNET) all per-
form with significantly higher SI-SDRs than those without
(AE, VAE, DVAE, and baseline), implying that their residual
connections are important for the task. In comparison, the
differences across U-Net-type models are minor with UNET
performing slightly better on the 1 h and 15 h training task,
while DUNET and DVUNET perform slightly better for 100 h
training. Thus, the variational bottleneck of DVUNET does not
result in improved performance for this scenario, and the effect
of dilated convolutions in DUNET is comparably small.

Objective perceptual measure evaluation (PESQ and STOI,
table II) with evaluation in non-reverberant test conditions,
similarly, shows the improved performance of U-Net-type
models, with again marginal differences between UNET,
DUNET and DVUNET. Ablation models without U-Net-type
residual connections (DVAE, VAE, AE) do not show compet-
itive performance in this experiment.

In reverberant testing conditions, UNET, DUNET, and
DVUNET obtain reduced perceptual scores, as expected dur-
ing a train/test-scenario mismatch. However, compared to the
other models, they still perform best with the variational bottle-
neck model (DVUNET) giving the highest perceptual scores

across reverberant conditions. The reduction in performance
when increasing training set length to 100 h that is observed
for the dilation models might indicate overfitting, such as
modeling of long-range spectro-temporal relations that are not
present in the reverb test set. The variational bottleneck proves
to be a beneficial architecture component, particularly under
the reverberant testing scenario.

Evaluated across conditions and perceptual measures (ta-
ble II, last two columns), DVUNET results in the highest per-
formance measures, with DUNET as the second-best model.
The other ablation models, as well as the baseline model, pro-
duce on average clearly lower perceptual scores. We conclude
that dilated convolutions with their increased spectral and
temporal context, and the variational bottleneck are important
model components when generalization of trained models to
reverberant test conditions is required.

Fig. 4 illustrates an example where the DVUNET algorithm
suppresses wide-band background noise as well as chirp
sounds with confined spectro-temporal support. We note that
the slight “blurring” in the DVUNET output is inaudible and
that in informal subjective listening, the DVUNET recon-
structed speech signal is perceived as high quality without
artefacts and a low degree of remaining noise compared to
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TABLE II
PERCEPTUAL EVALUATION ON THE 25–MINUTE LONG TEST SETS FOR 15H AND 100H TRAINING DATA.

no-reverb test reverb test no-reverb test reverb test
15h training 15h training 100h training 100h training average

Model PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI
DVUNET 2.99 93.74 2.44 79.30 3.14 94.85 1.99 70.93 2.64 84.71
DUNET 2.96 94.21 2.28 79.62 3.14 94.60 1.68 62.47 2.52 82.73
UNET 3.01 94.08 1.60 61.01 3.11 94.60 1.61 61.22 2.33 77.73
DVAE 1.25 48.33 1.29 33.43 1.27 48.67 1.30 35.20 1.28 41.41
VAE 1.25 49.53 1.40 35.88 1.32 50.95 1.31 37.36 1.32 43.43
AE 1.40 71.73 1.46 60.13 1.55 77.01 1.47 56.54 1.47 66.35
baseline 2.42 77.62 2.14 69.24 2.42 77.62 2.14 69.24 2.28 73.43
input data 2.52 91.51 2.16 86.62 2.52 91.51 2.16 86.62 2.34 89.07

baseline. Panel (c) highlights that some audible noise enters
the reconstructed signal through effects of the noisy phase,
indicating that phase-aware processing may further improve
results.

V. CONCLUSION

The present contribution developed a U-Net architecture
with a variational bottleneck and performed speech enhance-
ment with it. To our knowledge, a variational U-Net has not
been proposed for acoustic signals before, with related variants
having been developed for image segmentation [16]–[18]. The
variational U-Net and ablation systems thereof were compared
using data and baseline system from the deep noise separation
challenge. Results indicate that the variational bottleneck is
important for generalization from non-reverberant training to
reverberant test conditions. Necessity of lateral U-Net connec-
tions and usefulness of dilated convolutions have also been
corroborated by results.

The observation that the variational model performs best
is consistent with the hypothesis that the generative Gaussian
model in the variational bottleneck is better at steering the
reconstruction towards output data that is close to the training
distribution. Purely deterministic models, including the stan-
dard (non-variational) U-Net architecture, have been shown in
our experiments to perform worse under train/test-mismatch.

Future work will aim to further investigate applications with
a distribution shift between model and observation. Derever-
beration, e.g., may also benefit from a variational approach to
source reconstruction.
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