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Abstract—Speech enhancement aims to improve the intelligi-
bility and quality of speech that is affected by noise. In this
paper, we propose a novel speaker-aware speech enhancement
(SASE) method that extracts speaker information using long
short-term memory (LSTM) layers, and then uses a convolutional
recurrent neural network (CRN) to embed the extracted speaker
information. It is shown in a series of comprehensive experiments
that only a few seconds of reference audio suffice for the proposed
SASE method to perform better than LSTM and CRN baseline
systems. The addition of a self-attention mechanism can further
boost relevant speech-quality metrics.

I. INTRODUCTION

Speech enhancement aims to improve the quality and the
intelligibility of a speech signal that is degraded by ambi-
ent noise. Speech enhancement algorithms are used exten-
sively in many audio- and communication systems, including
mobile handsets, speaker verification systems and hearing
aids. Speech enhancement methods have been developed
and refined during the last several decades. Popular classic
techniques include spectral-subtraction algorithms, statistical
model-based methods that use maximum-likelihood (ML) es-
timators, Bayesian estimators, minimum mean squared error
(MMSE) methods, subspace algorithms based on single value
decomposition and noise-estimation algorithms (see [1] and
references therein). Modern speech enhancement techniques
often use deep learning, which typically outperform classic
methods. Early methods include a recurrent neural network
(RNN) that was used to model long-term acoustic characteris-
tics [2], a deep auto-encoder to denoise the signal using greedy
layer-oriented pre-training [3], and a deep neural (DNN) that
was used as a non-linear regression function [4]. In [5],
a convolutional recurrent neural network (CRN) was used,
consisting of a convolutional encoder-decoder architecture and
multiple long short-term memory (LSTM) layers. Generative
adversarial networks (GANs), which are known for their abil-
ity to generate natural-looking signals in the time or frequency
domain have also been applied successfully for speech en-
hancement [6]–[10]. Recent studies [11]–[17] consider the use
of an attention mechanism for speech enhancement. In [15],
self-attention [18] is combined with a dense convolutional
neural network. A time-frequency (T-F) attention method, pro-
posed in [16], combines time- and frequency-based attention
for noisy reverberant speech enhancement.

Recently, modeling to learn the acoustic noisy-clean speech
mapping has been enhanced by including auxiliary information
such as visual cues [19], phonetic and linguistic informa-
tion [20], [21], and speaker information [22]. In particular,
the utilization of three kinds of broad phonetic class (BPC)
information for speech enhancement can achieve notable im-
provements [21]. In [22], a speaker-aware deep denoising auto-
encoder (SaDAE) extracts speaker representation from the
noisy input using a DNN model. Target speaker extraction
was investigated in [23]–[26].

In this paper, we first visualize the impact of the quality
of a clean speech reference signal on speaker representation.
Given that it is generally possible to collect a few seconds
of clean reference speech in applications, e.g., similar to a
smart virtual assistant that needs a few-second clean speech
record during its setup stage, or extracted from (prior) high-
SNR recordings, it is worthwhile investigating how a few
seconds of clean reference can be best used to improve
speech enhancement performance. The paper proposes a novel
speaker-aware speech enhancement (SASE) method that ex-
tracts speaker information from a clean reference using long
short-term memory (LSTM) layers, and then uses a convolu-
tional recurrent neural network (CRN) to embed the extracted
speaker information. The SASE framework is extended with a
self-attention mechanism. Extensive simulations are performed
using the Valentini-Botinhao corpus [27] to determine the
performance of the proposed SASE method. It will be shown
that a few seconds of clean reference speech is sufficient, and
that the proposed SASE method performs well for a wide
range of scenarios.

II. SPEAKER EMBEDDING

The need for accurate speaker information is visualized
by an experiment with fifteen speakers from the Valentini-
Botinhao corpus [27], where two noise sources from the
DEMAND corpus were added at an SNR of -5 dB, 0 dB,
and 5 dB. Fig. 1 shows the t-distributed stochastic neighbor
embedding (t-SNE) [28] of the speaker embedding information
affected by noise. One clearly sees that speaker embedding
information is very sensitive to noise. To mitigate the effects
of noise, we propose to use clean reference speech, and
show that a few seconds suffice to properly extract speaker
embedding information. Given that it is often feasible to use a
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few seconds of clean reference speech in real applications, e.g.,
from pre-recorded training samples or from prior high SNR
recordings, it is worth investigating how the availability of a
few seconds of clean reference can be best used to improve
speech enhancement performance.
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Fig. 1. Example of t-SNE visualization for speaker embedding of 15 speakers
for various SNR conditions using two noise types from the DEMAND
corpus [29].

III. PROPOSED SASE SYSTEM

We propose a novel speaker-aware speech enhancement
(SASE) system that uses a short clean-speech reference. The
system consists of three components: a pre-trained speaker
embedding extractor to process the reference clean speech, a
CRN-based speech enhancement module, and a self-attention
module. The CRN comprises a convolutional encoder-decoder
structure which extracts high-level features with a 2-D con-
volution, and a long short-term memory (LSTM) layers to
capture long-span dependencies in temporal sequences. A
block diagram is shown in Fig. 2.

A. Speaker embedding extractor

The speaker embedding extractor, proposed in [30], is
shown to perform well and is used here. It consists of three
LSTM layers with 768 nodes in each layer and one linear layer
with a 256-dimensional output.

The pre-trained model 1 is trained using the VoxCeleb2 data
set [31], which comprises records of thousands of speakers.
The model takes as input a Mel-spectrogram, which is ex-
tracted using a Short Time Fourier Transform (STFT) with
an 80 ms window and a 40 ms hop size. The model achieves
a 7.4 % equal error rate on the VoxCeleb1 test data set (first
eight speakers of the data set).

1https://github.com/mindslab-ai/voicefilter
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Fig. 2. Proposed SASE framework.

B. Self-Attention Module

Self-attention [18] is an efficient context information aggre-
gation mechanism that operates on the input sequence itself
and that can be utilized for any task that has a sequential
input and output. Consider an 4-dimensional input X of shape
[B,C, T, F ], where B, C, T , and F denote the batch size,
number of channels, and the time and frequency dimensions,
respectively. The self-attention layer takes X as input and uses
three 1×1-convolutions to form the query Q and the key-value
pair (K,V), where Q and K have shape [B,C ′, T, F ], and V
has shape [B,C, T, F ]. To reduce memory requirements, we
use C ′ = C/8. Next, Q, K and V are reshaped to form 3D
matrices.

In order to compute the attention component A, we first
compute the weight W, given by

W = QTK, (1)

and then use the soft-max function σ(·) to obtain Ŵ =

{Ŵi,j} = σ (W), i.e.,

Ŵi,j =
exp (Wi,j)

wj
, where wj =

T ·F∑
i=1

exp (Wi,j) . (2)

The attention component A ∈ RB×C×T×F is now deter-
mined using

A = ŴVT, (3)

The attention module outputs X̂ = X + δA, where δ is a
learnable scalar with initial value zero.
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C. Proposed SASE framework

The SASE framework, shown in Fig. 2, has three main
components: an encoder-decoder based CRN, a LSTM-based
speaker embedding extractor and a self-attention module.
The encoder of the CRN consists of five 2-D convolutional
blocks, each of which includes a 2-D convolutional layer,
a batch normalization layer [32], and exponential linear
units (ELUs) [33]. The decoder uses five 2-D deconvolu-
tional blocks to convert the low-resolution features into high-
resolution spectrograms. Each deconvolutional block consists
of a 2-D transposed convolutional layer, followed by batch
normalization and the ELU activation. We include skip con-
nections from each encoder layer to its corresponding decoder
layer, in order to avoid losing fine-resolution details and to
facilitate optimization. There are two LSTM layers between
the encoder and decoder to capture long-term temporal depen-
dencies.
Training Flow. The proposed SASE method takes noisy
speech and reference clean speech as input. The reference
clean speech is fed into the speaker embedding extractor
to obtain speaker information. The noisy speech is fed into
the encoder to determine the low-resolution features. The
concatenation of the speaker representation and the encoder
output are then fed into LSTM layers. The LSTM output is
also fed into the self-attention module. The attention output
is then followed by the encoder. We apply a sigmoid at the
encoder output to generate a [0-1] mask. The following loss
function, referred to as SA-MSE, is used during the training
stage:

L = ‖M�X− X̂‖2. (4)

where X and X̂ denote the magnitude of the noisy speech and
clean speech signals, respectively, and the operator � denotes
the Hadamard product. The mean squared error (MSE) loss
function that is determined using the clean and predicted mag-
nitude directly is referred to as SM-MSE. When performing
the inverse STFT to reconstruct the waveform, we use the
phase of the original noisy speech.

IV. EXPERIMENTS AND RESULTS

In the following, the data set, model set up and the evalua-
tion metrics are detailed. The results will be discussed at the
end of this section.

A. Data Set

The database used here is derived from the Valentini-
Botinhao corpus [27]: 84 speakers and two speakers in the
original data set are used for training and test, respectively.
Each speaker fragment consist of about 10 different sentences.
The noisy training set used here considers 40 conditions:
10 noise types (two artificial noise types and eight noise
types selected from the Demand database [29]), where each
noise type is considered at an SNR of 0 dB, 5 dB, 10 dB,
15 dB. For the test set, a total of 20 different conditions
are considered: five types of noise (all from the Demand
database) with four SNRs each (2.5 dB, 7.5 dB, 12.5 dB and

17.5 dB). There are around 20 different sentences in each
condition for each test speaker. The test set condition is totally
different with the training set, as it uses different speakers and
conditions. For each speaker, we generate a 60-second segment
as clean reference speech. The clean reference is processed by
removing the silence part. After holding out the utterance for
clean reference, there are 722 sentences in total for testing.
During the training stage or testing stage, we randomly choose
a small segment from the clean reference for the given segment
size, e.g., 2 s, 4 s, 6 s, and 8 s.

B. Model Setup

The baseline systems considered here are the LSTM- and
CRN-based speech enhancement methods. The LSTM baseline
model consists of two LSTM layers with 768 nodes each,
followed by a fully-connected output layer that reduces the
dimension to 161. The CRN-based method consists of five
conv2d blocks with filters of size 3× 2 each and [16, 32, 64,
128, 128] output channels, respectively. This output is post-
processed by two LSTM layers with 512 nodes each, followed
by five deconv2d blocks with filter size 3× 2 each and output
channels [128, 64, 32, 16, 1], respectively.

The proposed SASE method has a similar encoder-decoder
as the CRN-based method. The speaker representation (256-
D) and the encoder output (512-D) are concatenated and then
fed into two LSTM layers of 768 nodes each. The output is
then projected onto 512 feature dimensions and reshaped to
match the encoder output, and then post-processed by the self-
attention module and the decoder.

The feature input for all models is a spectral magnitude
vector of length 161 of the noisy speech signal, which is
computed using a STFT with a 20 ms Hamming window and
a 10 ms window shift. All models are trained using the Adam
optimizer [34] with an initial learning rate of 0.0006. A mini-
batch size of 32 utterances is used for all models except for
SASE with attention. SASE with attention uses mini-batch size
of 16 utterances. We zero-pad all utterances to have the same
length as the longest utterance within a mini-batch.

C. Evaluation Metrics

The speech enhancement systems are evaluated using
the commonly used perceptual evaluation of speech quality
(PESQ) score [35]–[37], the short-time objective intelligibility
(STOI) score [38], and the scale-invariant signal-to-distortion
ratio (SI-SDR) [39]. Three subjective scores that measure
signal distortion CSIG, background intrusiveness CBAK and
overall quality COVL scores [40] are used as well.

D. Experiments and Results

We first investigate the performance of all models by
determining the SM-MSE loss. The results are provided in
Table I. The performance metrics for the CRN-based method
are better than the LSTM-based method, except in terms of
PESQ. The proposed SASE approach outperforms the CRN
baseline system, even with only 2 s reference clean speech. The
best performance when applying the SM-MSE loss function
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TABLE I
PERFORMANCE SCORES FOR THE PROPOSED SASE AND BASELINE SYSTEMS

Loss Model size PESQ STOI SI-SDR CSIG CBAK COVL

Noisy Speech – – 1.970 92.06 8.51 3.35 2.45 2.63
LSTM

SM-MSE

7.71 M 2.608 93.44 16.36 2.91 3.10 2.74
CRN 4.69 M 2.598 93.49 16.52 3.31 3.14 2.94

SASE (2s)

10.33 M (12.13 M)

2.636 93.67 16.80 3.42 3.18 3.02
SASE (4s) 2.627 93.72 16.73 3.44 3.18 3.02
SASE (6s) 2.649 93.80 16.93 3.48 3.20 3.05
SASE (8s) 2.651 93.72 16.84 3.52 3.19 3.07

LSTM

SA-MSE

7.71 M 2.614 93.65 16.70 3.96 3.19 3.29
CRN 4.69 M 2.658 93.87 16.67 4.02 3.22 3.34

SASE (2s)

10.33M (12.13 M)

2.702 93.95 16.86 4.08 3.26 3.40
SASE (4s) 2.699 94.07 16.97 4.09 3.27 3.40
SASE (6s) 2.696 94.00 16.92 4.08 3.26 3.40
SASE (8s) 2.693 93.98 17.05 4.08 3.27 3.39

SASE (2s) + attn

SA-MSE 10.35M (12.13 M)

2.670 93.92 17.14 4.05 3.26 3.36
SASE (4s) + attn 2.706 94.02 17.34 4.05 3.29 3.38
SASE (6s) + attn 2.756 94.05 17.35 4.09 3.32 3.43
SASE (8s) + attn 2.703 93.97 17.23 4.05 3.28 3.38
The values in parenthesis specify the duration of the reference speech signals. The best score in a column is bold-faced,

the second best is navy blue and the third best is dark pink.

is achieved by SASE with 8 s reference speech. This indicates
that additional speaker information is useful to further improve
speech enhancement performance. Next, we replace the SM-
MSE loss function by SA-MSE at the training stage. Table I
shows that all SA-MSE-based loss models perform better than
the models that use the SM-MSE loss function, in particular
for the PESQ, CSIG and COVL scores. For instance, relative
to SASE with 2 s reference speech using SM-MSE loss, the
PESQ score improves from 2.636 to 2.702 and the COVL
score improves from 3.02 to 3.40.

Further adding self-attention can boost the performance as
well in terms of most metrics. We observe that adding self-
attention improves the SI-SDR consistently for all SASE-
based approaches. The best PESQ, SI-SDR, CISG, CBAK, and
COVL scores are achieved by SASE with a 6-second reference
speech signal.

Fig. 3 shows the PESQ, STOI and SI-SDR scores for both
the proposed SASE system (with 6-s self-attention) and the
baseline systems as a function of SNR. One can clearly see that
the proposed SASE method is more effective at lower SNR.
This suggests that additional speaker information provides
important cues to distinguish the speech and noise when there
is a lot of noise.
Model complexity. The proposed SASE method has more
parameters than the baseline systems, because of the three
LSTM layers of the speaker embedding extractor. It is planned
to replace the LSTM-based speaker embedding extractor with
an extractor that uses CNN models with fewer parameters.

V. CONCLUSIONS

In this paper, we presented and validated a novel speaker-
aware speech enhancement method that uses a few seconds
of reference clean speech. We first compared the proposed
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Fig. 3. PESQ, STOI, SI-SDR and COVL scores for noisy speech (blue), the
LSTM-method (orange), the CRN-based method (green) and the proposed
SASE system with 6-s self-attention (red) when the SNR is 2.5, 7.5, 12.5,
and 17.5 dB.

SASE with baseline systems using spectral mapping-MSE
and mask-based signal approximation-MSE loss, respectively.
The experimental results indicate that the proposed SASE
system outperforms the baseline systems using both loss
functions. The results also show that using mask-based signal
approximation loss is better than spectral mapping-MSE loss.
Adding self-attention achieves the best performance in terms
of most metrics, especially for SI-SDR metric. We tested the
proposed SASE approach with four different reference-speech
durations. All achieved better performance in comparison with
the CRN baseline, which demonstrates the effectiveness of the
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proposed method.
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