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Abstract—Recent research on speech enhancement (SE) has 

seen the emergence of deep-learning-based methods. It is still a 

challenging task to determine the effective ways to increase the 

generalizability of SE under diverse test conditions. In this study, 

we combine zero-shot learning and ensemble learning to propose 

a zero-shot model selection (ZMOS) approach to increase the 

generalization of SE performance. The proposed approach is 

realized in the offline and online phases. The offline phase clusters 

the entire set of training data into multiple subsets and trains a 

specialized SE model (termed component SE model) with each 

subset. The online phase selects the most suitable component SE 

model to perform the enhancement. Furthermore, two selection 

strategies were developed: selection based on the quality score 

(QS) and selection based on the quality embedding (QE). Both QS 

and QE were obtained using a Quality-Net, a non-intrusive quality 

assessment network. Experimental results confirmed that the 

proposed ZMOS approach can achieve better performance in both 

seen and unseen noise types compared to the baseline systems and 

other model selection systems, which indicates the effectiveness of 

the proposed approach in providing robust SE performance. 

Keywords— speech enhancement, deep learning, zero-shot 

learning, model selection. 

I. INTRODUCTION  

Speech enhancement (SE) is an important front-end module 
for various speech-related applications, such as automatic 
speech recognition (ASR) [1–3], assistive listening [4–8], 
speech coding [9–10], and speaker recognition [11–12] systems. 
The primary aim of SE is to retrieve clean speech signals from 
noisy signals. With the emergence of deep learning algorithms, 
notable improvements in SE have been made over the traditional 
SE methods. Well-known examples include the fully connected 
neural network [13–14], deep denoising auto-encoder (DDAE) 
[15–17], convolutional neural network (CNN) [18–19], long 
short-term memory (LSTM) [20–21] and their combinations 
[22–24]. Despite past promising improvements, increasing the 
generalizability of deep-learning-based SE methods to unseen 
environments remains a critical research topic.   

Zero-shot learning is a machine learning algorithm that has 
been proven to be capable of improving generalizability to 
unseen environments. This learning criterion has been 
successfully implemented in the field of image processing to 
recognize unseen objects with satisfactory performance [22–
26]. In the field of speech processing, several attempts have been 
made to incorporate a zero-shot learning algorithm for robust 
performance [27–30]. For instance, in [29], speaker embedding 

was extracted and used as additional guidance to conduct noise 
reduction. In [30], noise embedding, namely the dynamic noise 
embedding, was extracted and used to characterize background 
noise information to develop more optimal noise reduction 
performance. However, most of the current zero-shot learning 
strategies rely on a similar fashion, where the generated latent 
representation is incorporated as an additional feature into the 
main task. In addition, due to the notable success of model 
selection approaches [31–32], we aim to use zero-shot learning 
as a model selection approach. To the best of our knowledge, no 
prior work has proposed the use of latent representations for 
model selection in speech enhancement tasks. 

In this study, we propose a novel zero-shot model selection 
(ZMOS) approach for SE. The proposed approach combines 
zero-shot learning and ensemble learning to improve SE 
performance under any specific test condition and is 
implemented in two phases: offline and online. In the offline 
phase, we prepared multiple specialized SE models (termed 
component SE models). Each component SE model was trained 
to match the specific noisy condition. In the online phase, we 
selected the most suitable component SE model to enhance the 
test utterance. For the proposed approach, the effective 
clustering of the training data to train the multiple-component 
SE models in the offline phase and selecting the most suitable 
component SE model for a test utterance in the online phase are 
critical points. We propose to perform data clustering and model 
selection using a pre-trained Quality-Net [33]. A Quality-Net is 
a deep-learning-based non-intrusive quality assessment model. 
Given an utterance, the Quality-Net outputs a quality assessment 
score. Previous studies have shown that the Quality-Net can 
accurately predict the quality assessment score of an utterance.  

Two types of data clustering and model selection strategies 
are developed: one is based on the quality score (QS), and the 
other is based on the quality embedding (QE); the corresponding 
approaches are termed as ZMOS-QS and ZMOS-QE, 
respectively. Both the QS and QE were estimated using the 
Quality-Net. Given an utterance, the QS is based on the output 
score of the Quality-Net, and the QE is based on the embedding 
vector of Quality-Net. In the offline phase, QS or QE was used 
to group the training data into several clusters. Each cluster was 
used to train a specialized SE model. A centroid vector was 
computed to represent each specialized SE model. In the online 
phase, the QS or QE of the test utterance is used to identify one 
cluster of training data, i.e., the corresponding component SE 
model. Finally, the selected SE model was used to perform the 
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enhancement. Notably, the other reference neural network 
models can be used to prepare features for data clustering and 
model selection. The Quality-Net was chosen because the model 
was trained to predict the quality score, so it should possess 
useful speech information.   

To evaluate the proposed zero-shot model selection (ZMOS) 
approach, we adopted the perceptual evaluation of speech 
quality (PESQ) [34] and short-time objective intelligibility 
(STOI) [35] objective evaluation metrics. Experimental results 
under both seen and unseen noisy conditions show that the 
proposed approach can achieve notable improvements 
compared with the baselines and other model selection 
approaches, thereby confirming the effectiveness of the 
proposed SE approach in providing robust enhancement 
performance. 

II. THE PROPOSED SYSTEMS 

In this study, we propose two types of ZMOS strategies 
based on QS and QE. Both strategies share a similar concept by 
incorporating the Quality-Net as a reference model to extract 
quality features for performing the data clustering and model 
selection processes. In this section, we first review the Quality-
Net model and introduce how to extract the QS and QE features 
with the Quality-Net. We then explain how to establish the 
ZMOS-QS and ZMOS-QE systems.  

A. Quality-Net 

Quality-Net is a non-intrusive quality assessment neural 
network model trained with the aim of predicting utterance-level 
PESQ scores. As the length of the utterance varies, a 
bidirectional LSTM (BLSTM) is used to model the longer 
temporal information. In addition, to achieve a more accurate 
prediction score and mimic the human perceptive system, a 
conditional frame-wise constraint is introduced to train the 
model. Accordingly, the objective function of the Quality-Net is 
derived as follows 

𝑂 =
1

𝑁
∑[(𝑄𝑛 − 𝑄̂𝑛)

2
+

𝛼(𝑄𝑛)

𝐿(𝑈𝑛)

𝑁

𝑛=1

∑ (𝑄𝑛 − 𝑞𝑛,𝑙)
2]

𝐿(𝑈𝑛)

𝑙=1

 

 

(1) 

 

where 𝑁 and 𝐿(𝑢
𝑛
) indicate the number of training utterances 

and the number of frames of the 𝑛-th utterance, respectively; 

𝑄𝑛  and 𝑄̂𝑛  indicate the true and predicted PESQ scores, 

respectively; and 𝑞
𝑛,𝑙

 and 𝛼(𝑄𝑛) indicate the estimated frame-

level quality of the 𝑙 -th frame of utterance 𝑛  and weighting 

factor, respectively. Finally, given a noisy input 𝑦
𝑛

, the 

Quality-Net equation can be derived as follows: 

𝑄̂𝑛 = 𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑁𝑒𝑡(𝑦𝑛), (2) 

 

where 𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑁𝑒𝑡(. ) denotes the PESQ prediction function. 

    In our previous studies [32–33], we have confirmed the high 

prediction capability of the Quality-Net. We believe that both 

the output scores and latent representations of the Quality-Net 

provide useful information for determining the quality of given 

speech. This was the main motivation for this study. 

B. The Proposed System I: ZMOS-QS 

 

 
The overall system architecture of the ZMOS-QS is shown 

in Fig. 1. In the training stage, we first apply the short-time 
Fourier transform (STFT) to convert speech waveforms into 
spectral features. With the paired spectral features, 𝒁=[X, Y], 
which are formed by noisy spectral features 𝒀 and clean spectral 
features 𝑿 , PESQ scores are computed. They are used as a 
reference to cluster the entire set of training data into several 
subsets: {𝒁1, … , 𝒁𝑡 , … 𝒁𝑇}, where 𝒁𝑡 is the t-th subset of paired 
training data, and 𝑇 is the total number of subsets. Based on the 
T subsets of the training data, we then estimate the T-component 
SE models with an ideal ratio mask (IRM) [36] in the log domain 
as the training target criterion: 

𝑫1 = 𝐹1(𝒀1), 

… 

𝑫𝑡 = 𝐹𝑡(𝒀𝑡), 

… 

 𝑫𝑇 = 𝐹𝑇(𝒀𝑇), 

(3) 

where 𝒀𝑡, 𝑫𝑡 and 𝐹𝑡 are the input, output, and transformation, 

respectively, of the 𝑡-th SE model.  

In ZMOS-QS, the training data are clustered based on their 

PESQ scores predicted by the Quality-Net. Specifically, the 

PESQ scores were ranked. The training utterances with similar 

PESQ scores were grouped into a subset for training the 

corresponding component SE model. The average PESQ score 

for each subset was computed.        

In the testing phase, given a noisy speech with the spectral 

feature 𝒚̃, its PESQ is first estimated by the Quality-Net. Then, 
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Fig. 1: The architecture of the ZMOS-QS approach. 
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the enhancement is carried out by 𝒅̃ = 𝐹𝑡(𝒚̃) , when 

𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑁𝑒𝑡(𝒚̃) is closest to the average PESQ score of the t-th 

component SE model and enhanced spectral feature   =
 𝐹𝑀( ̃, 𝑦 ), where 𝐹𝑀 is the masking function. Finally, an inverse 

STFT is applied to reconstruct the enhanced speech waveform 

using enhanced spectral features, where the phase from the 

noisy speech is used. 

C. The Proposed System I: ZMOS-QE 

 

 

ZMOS-QE adopts a similar idea to ZMOS-QS. Instead of 

QS, ZMOS-QE uses the latent representations of the Quality-

Net to perform the data clustering and model selection, as 

shown in Fig. 2. In the training phase, given noisy spectral 

features, 𝒀 = [𝒚1, … , 𝒚𝑛 … , 𝒚𝑁], where N is the total number of 

frames, a set of QE features, 𝑸 = [𝒒1, … , 𝒒𝑛 … , 𝒒𝑁] , is 

extracted. Next, by applying the K-means algorithm to the 

entire set of QE features, we can cluster the QE features into T 

clusters. Accordingly, the training data can be divided into T 

subsets, {𝒁1, … , 𝒁𝑡 , … 𝒁𝑇} , represented by T centroid QE 

vectors, 𝑽 = [𝒗1, … , 𝒗𝑡 , … 𝒗𝑇], respectively. Then, we prepared 

T-component SE models, as shown in Eq. 3.  

In the testing stage, given a noisy speech with spectral 

features, 𝒚̃ , we first compute the QE feature, 𝒒̃ , using the 

Quality-Net. Then, we calculate the distance between 𝒒̃ and 

each of the centroid QE features in [𝒗1, … , 𝒗𝑡 , … 𝒗𝑇]. Next, we 

perform SE by 𝒅̃ = 𝐹𝑡(𝒚̃) if 𝒗𝑡  is closest to 𝒒̃ and obtain the 

enhanced spectral feature 𝐹𝑀(𝒅̃, 𝒚̃). With the enhanced spectral 

feature, 𝒙, we can obtain the enhanced waveform by applying 

ISTFT along with the phase from the noisy speech. 

 

III. EXPERIMENTS 

In this section, we first present the experimental setup, 
including the dataset preparation and the neural network model 
architectures. Next, we present the experimental results of 
ZMOS-QS and ZMOS-QE and discuss our findings.  

A. Experimental Setup 

We adopted the Wall Street Journal (WSJ) [37] dataset to 
evaluate the proposed ZMOS-QS and ZMOS-QE approaches. 
The WSJ dataset consists of 37,416 training and 330 test 
utterances recorded at a 16-kHz sampling rate. We prepared the 
noisy training utterances by injecting 100 types of stationary and 
non-stationary noises [38] into the WSJ training utterances at 31 
signal-to-noise ratio (SNR) levels ranging from 20 to -10 dB 
with a step of 1 dB. For the test data, we prepared the noisy 
utterances by injecting two seen (white and engine noises) and 
two unseen (car and street noises) noise types at five SNR levels 
(-10, -5, 0, 5, and 10 dB). With a Hamming window of 32 ms 
and a hop size of 16 ms, a 512-point STFT was performed on 
the training and test utterances to extract 257-dimensional log-
power spectra features.  

We compared the proposed approaches with a CNN-based 
baseline system. The CNN model consisted of 12 convolutional 
layers, followed by a fully connected layer consisting of 128 
neurons. Each convolutional layer contains four channels {16, 
32, 64, and 128}. Each channel has three types of strides: {1, 1, 
3}. The entire set of training utterances was used to train the 
CNN-based baseline. The component SE models in the ZMOS-
QS and ZMOS-QE were implemented based on the same CNN 
architecture for a fair comparison. The training data were first 
divided into several subsets, with each subset used to train a 
component SE model. In this study, we divided the entire set of 
training data into four clusters. Therefore, there are four 
component SE models.  

We used the standardized PESQ and STOI scores to evaluate 
the proposed ZMOS-QS and ZMOS-QE approaches. PESQ was 
used to evaluate the quality of speech, with a score ranging from 
-0.5 to 4.5. STOI was designed to evaluate the intelligibility of 
speech, with a score ranging from 0 to 1. Higher PESQ and 
STOI scores indicate that the enhanced speech has better speech 
quality and intelligibility, respectively. 

B. Objective Evaluation Results 

The average PESQ and STOI scores of unprocessed noisy 

speech, enhanced speech by CNN baseline, ZMOS-QS, and 

ZMOS-QE under white and engine noise types are shown in 

Tables 1. These two noise types were seen in the training. For 

comparison, we implemented and tested performance using 

another model selection method, specialized Speech 

Enhancement Model Selection (SSEMS) [32], in which the 

component models are trained to learn gender and signal-to-

noise-ratio (SNR) information instead of the data-driven 

approach used in ZMOS. From Tables 1, we can note that both 

ZMOS-QS and ZMOS-QE achieve notably better PESQ and 

STOI scores than the unprocessed noisy speech, the baseline 

CNN system, and the SSEMS in both stationary and non-

stationary noisy environments.  
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Fig. 2: The architecture of the ZMOS-QE approach. 
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Table 1.  PESQ and STOI comparison of Noisy, CNN, 

SSEMS, ZMOS-QS, ZMOS-QE systems under seen noise 

conditions (white and engine noises).  

 PESQ STOI 

Noisy 2.01 0.77 
CNN 2.42 0.78 
SSEMS [32] 2.43 0.78 
ZMOS-QS 2.46 0.79 
ZMOS-QE 2.52 0.79 

 

Table 2.  PESQ and STOI comparison of Noisy, CNN, 

SSEMS, ZMOS-QS, ZMOS-QE systems under unseen noise 

conditions (car and street noises).  

 PESQ STOI 

Noisy 1.71 0.68 
CNN 2.49 0.80 
SSEMS [32] 2.53 0.80 
ZMOS-QS 2.51 0.81 
ZMOS-QE 2.57 0.80 

 

Table 2 shows the average PESQ and STOI scores of the 

unprocessed noisy speech, the enhanced speech by CNN 

baseline, SSEMS, ZMOS-QS, and ZMOS-QE for car and street 

noise types. These two noise types were not observed during 

the training. From Table 2, we can again note that ZMOS-QE 

achieves considerably better performance compared to the 

other systems. The ZMOS-QS achieved better performance 

than the baseline systems and comparable performance with the 

SSEMS systems. Overall, the results confirm the effectiveness 

of the proposed approach for robust speech enhancement (SE) 

performance. 

C. Model Selection Analysis 

In the previous section, we demonstrated the effectiveness 

of the proposed method for noise reduction. In particular, we 

demonstrated the effectiveness of using latent representations 

to develop the component models and perform the model 

selection. Based on the notable performances achieved by 

ZMOS-QE, we conducted additional evaluations, where the 

comparative systems adopted the same component models as 

those used in ZMOS-QE but different model selection 

strategies.  

Two other systems, namely the auto-encoder-based 

approach DAE [31] and SSEMS-QE [32], were developed. The 

DAE selects the best candidate based on the reconstruction 

error of the auto-encoder. Meanwhile, SSEMS-QE selects the 

best candidate based on the highest PESQ score given several 

component models. In contrast to the original SSEMS, SSEMS-

QE adopted the quality embedding-based component models as 

those used in the ZMOS-QE approach. As shown in Figs. 3 and. 

4, the proposed ZMOS-QE consistently overcomes the other 

selection methods in terms of PESQ and STOI scores under 

seen and unseen noises. Interestingly, unlike the other selection 

methods that require computing all possible component models 

to select the most suitable model, our proposed method can use 

only one utterance to identify the best fit model. Therefore, it 

can reduce the computational cost but yet still maintains better 

enhancement performances. 

D. Spectrogram Analysis 

In addition to the objective evaluations, we present the 

spectrograms to visualize the processed speech. Fig. 5 shows 

the spectrograms of a clean utterance (top left), corresponding 

noisy utterance at 0 dB SNR under car-noise (top right), 

enhanced speech by the CNN baseline (bottom left), and 

enhanced speech by ZMOS-QE (bottom right). We present the 

resulting spectrogram of ZMOS-QE only because ZMOS-QE 

has consistently achieved more effective reduction 

performance. From Fig. 5, we can confirm the effectiveness of 

the CNN baseline for SE. The proposed ZMOS-QE model can 

yield even better noise reduction results and recover the speech 

more accurately, compared with the CNN baseline, as seen in 

the red box; the speech processed by ZMOS-QE retains more 

detailed speech information than the CNN baseline.  

IV. CONCLUSIONS 

In this study, we proposed two zero-shot model selection 
approaches for SE: ZMOS-QS and ZMOS-QE. The proposed 
approaches were derived based on zero-shot learning and 
ensemble learning. The quality score and embedding from the 
Quality-Net were used to perform data clustering and model 
selection. Experimental results confirmed that the proposed 
approaches effectively improve the SE performance of the 
baseline system, based on which the proposed approaches are 
built. To the best of our knowledge, this work is the first attempt 
to perform zero-shot learning as a model selection for SE and 
has improved the performance. In the future, we will explore the 
applicability of the proposed ZMOS approaches in other speech-
processing tasks, such as dereverberation or cross-corpus SE 
tasks. 
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Fig.5: Spectrograms of a clean utterance (Clean), along 

with its noisy version (car noise at 0 dB SNR) (Noisy), 

and the CNN baseline and ZMOS-QE enhanced ones. 

495


