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Abstract—In this paper, we consider the problem of resource-efficient
architectures for audio-visual automatic speech recognition (AVSR).
Specifically, we complement our earlier work that introduced efficient
convolutional neural networks (CNNs) for visual-only speech recognition,
by focusing here on the sequence modeling component of the architecture,
proposing a novel resource-efficient time-delay neural network (TDNN)
that we extend for AVSR. In more detail, we introduce the sTDNN-F
module, which combines the factored TDNN (TDNN-F) with grouped
fully-connected layers and the shuffle operation. We then develop an
AVSR system based on the sTDNN-F, incorporating the efficient CNNs
of our earlier work and other standard visual processing and speech
recognition modules. We evaluate our approach on the popular TCD-
TIMIT corpus, under two speaker-independent training/testing scenarios.
Our best sTDNN-F based AVSR system turns out 74% more efficient than
a traditional TDNN one and 35% more efficient than TDNN-F, while
maintaining similar recognition accuracy and noise robustness, and also
significantly outperforming its audio-only counterpart.

Index Terms—AVSR, TDNN, MobiLipNet, computational efficiency.

I. INTRODUCTION

Recently, significant progress has been achieved in the area of
audio-visual automatic speech recognition (AVSR), thanks to deep
learning-based architectures, e.g. [1]–[14]. However, the resulting
systems turn out to be computationally intensive, requiring significant
hardware resources due to their reliance on expensive components,
typically recurrent and convolutional neural networks (CNNs). For
example, in the visual-only speech recognition (VSR) system of [14],
the 2D-CNN alone includes 67.46× 10 6 parameters and consumes
11.22× 10 9 floating point operations (FLOPs) to process a single
video frame. Such requirements render deployment on resource-
limited devices impractical, thus necessitating the development of
efficient AVSR architectures and motivating our work.

For traditional audio-only automatic speech recognition (ASR),
resource-efficient deep-learning models have been investigated in
many works. For example, in [15], efficiency was approached in
a holistic manner, adapting multiple ASR pipeline components.
Specifically, the parameters of the deep neural network-based acoustic
model were quantized, allowing computations to utilize integer-only
multiplication, while for decoding, lazy evaluation was used at the
pre-softmax layer to reduce computational requirements by ignoring
its denominator. Further, in other works, depthwise/pointwise con-
volution factorizations, initially proposed in efficient architectures
for computer vision problems (e.g. MobileNet [16] for image clas-
sification), have been exploited in speech processing applications.
For example, in [17], depthwise convolutions were used in a CNN-
based system for audio-only single-channel speech separation, while
for ASR such transformations have been applied to time-delay
neural network (TDNN) architectures [18]–[22], gated CNN [23],
and diagonal long short-term memory [24] based systems.

In contrast, the issues of computational cost and resource-efficient
architectures have only recently started to attract interest in VSR and

AVSR [25]–[29]. For example, in [25], computational efficiency of
an AVSR system was evaluated by varying the recognition network’s
channel configuration. Further, in our early work on the topic [27],
we introduced the “MobiLipNetV2” architecture for VSR, replacing
standard convolutions of CNNs (used for visual stream encoding)
by grouped ones, such as depthwise and pointwise, and utilizing the
shuffle operation [30] to enable feature sharing across groups. As
a result, we reduced computations by 37 times (in FLOPs) over
the state-of-the-art 3D-ResNet with only a minor 0.07% absolute
word error rate degradation for continuous VSR on TCD-TIMIT
data [31]. Subsequently, in [28], we extended that work and pro-
posed “MobiLipNetV3”, coupled with a resource-adaptive scheme
that employed two efficient CNNs to provide a range of operating
points trading off VSR system efficiency vs. accuracy. Both our
earlier papers relied on TDNNs for temporal classification, which
are known to offer strong temporal modeling, while being leaner and
easier to optimize compared to recurrent architectures. However, in
those works we ignored the issue of efficient TDNN architectures,
directing instead our attention to the more demanding CNN module.
In contrast, in this paper, we shift our focus on improving the effi-
ciency of TDNN-based modeling, thus complementing the efficient
architectures of our earlier works [27], [28].

Specifically, as detailed in Section II, we introduce sTDNN-F, a
novel resource-efficient module for TDNN-like architectures that is
based on the factored TDNN [32], by replacing its fully-connected
layers with grouped ones. Additionally, we insert a shuffle layer to
the module, enabling feature sharing across parallel groups. It should
be noted that the proposed sTDNN-F architecture is also applicable
to audio-only recognizers, however our focus here lies primarily on
AVSR. We thus build a resource-efficient AVSR system described in
Section III, by integrating the proposed sTDNN-F with other standard
visual processing and speech recognition components, in conjunction
with early audio-visual fusion (feature concatenation) due to its pop-
ularity among AVSR works. We evaluate our approach on the TCD-
TIMIT corpus [31], a widely used dataset for continuous speaker-
independent AVSR, reporting our experiments in Section IV. There,
we compare the proposed system to traditional TDNN baselines
in terms of computational efficiency and recognition performance.
Specifically, we consider a range of acoustic noise conditions for
two system training/testing scenarios, and we demonstrate substantial
efficiency gains by our approach with no significant degradation in
recognition accuracy and noise robustness.

II. NETWORK MODULES

We now discuss our proposed sTDNN-F module, basing its pre-
sentation on the TDNN and TDNN-F modules that are frequently
used in non-recurrent speech recognition systems, and examining the
structure and computational cost of all three models in detail. Note
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(a) TDNN ( L=3 )

(b) TDNN-F ( L1= L2= 2 ) (c) sTDNN-F ( G=4 , L1=L2=2 )

Fig. 1. The network building blocks detailed in Section II: (a) TDNN module
with 3-frame splicing; (b) TDNN-F module with 2 FC layers and intermediate
2-frame splicing; (c) Proposed sTDNN-F module with 4 groups (sTDNN-F-4).
Residual connections in the latter two are scaled by factor 0.66.

that in the following, we will be using the terms fully-connected (FC)
and 1D-convolution interchangeably.

A. The TDNN module

TDNNs [18] (also known as 1D-CNNs) are built using FC layers
of local temporal connectivity. A single module of such network is
shown in Fig. 1a. We denote the dimension of the input feature vector
with M and the output dimension with N. Initially, a total of L feature
frames are concatenated to form a single feature vector ( 1×M →
L×M ). These are usually temporally adjacent for lower layers, or
non-adjacent ones for layers deeper in the network (dilation greater
than one in CNN terminology). The spliced feature vector is passed
to an FC layer ( L×M → 1×N ). Finally, the rectified linear unit
(ReLU) activation and batch normalization (BN) [33] are applied.

B. The TDNN-F module

The TDNN-F [32] is a factored form of TDNN. As also shown in
Fig. 1b, it uses two (or more) FC layers, with one constrained to be
semi-orthogonal. Similarly to a TDNN, the first layer is a splicing
one that concatenates L1 frames of M-dimensional features ( 1×M
→ L1×M ). The first FC layer acts as bottleneck, by reducing the
input dimension from M to K ( L1×M→ 1×K, with K<<M ). After
that, L2 frames are spliced again ( 1×K → L2×K ), and the second
FC layer (projection) is applied ( L2×K→ 1×N ). There also exists
a TDNN-F variant with an additional FC layer ( 1×K → 1×K )
between the bottleneck and projection layers, however we do not
use it here. After the projection layer, ReLU and BN are applied. A
special form of dropout is optionally used, where the mask is uniform
across all time-steps and the dropout value has a continuous range
instead of zero. A statically scaled (usually 0.66) residual connection
is also applied between the input and output of the module.

C. The sTDNN-F module

The sTDNN-F module is a novel TDNN-F variant introduced
here. Although the model retains the overall training procedure of its
predecessor and its bottleneck and projection FC layers, the goal is

Fig. 2. Detailed operation of the sTDNN-F shuffle layer for M-dimensional
features and G = 2 groups, depicting feature block re-positioning. Shown
inside each block are the group id (e.g. [ g = 1 ] ), the start index (left side,
inclusive), and the end index (right side, non-inclusive) of its elements.

to offer high recognition accuracy in a resource-efficient manner. For
this purpose, the FC layers of the TDNN-F are replaced by so-called
“grouped fully connected” (GFC) layers (see also Fig. 1c). In those
layers, each output unit is only connected to a subset of the input. The
modification yields clear efficiency improvements, due to reduced
connectivity in FC layers. For example, if two groups were used, the
required FLOPs would be halved. For notational convenience, we will
append the number of groups employed to the naming convention of
the proposed module, e.g. for a configuration that uses two groups
we will refer to it as the sTDNN-F-2.

An issue with parallel GFC layers is the lack of feature interchange
across groups. To overcome this, we insert a shuffle layer [30],
enabling cross-group information exchange. To highlight its oper-
ation, let us assume one input feature vector with two groups.
Then, referring to Fig. 2, the first output group will contain the
first-half features of both input groups, and similarly, the second
output group will end up with the second-half features of the input
groups. Note that the shuffle layer has no parameters and requires
no computations: Memory copies can be eliminated by changing the
destination location of the preceding layer, assuming that the shuffle
layer is the sole successor, and thus there is no need for a feature
vector in its original “non-shuffled” state.

In more detail, as shown in Fig. 1c, the sTDNN-F operation
commences with a splitting layer that partitions the input feature
vector to the number of groups (denoted by G ). Next, for each
group, a temporal splicing layer concatenates L1 frames of M/G-
dimensional features ( 1×M/G → L1×M/G ). Then, a bottleneck
GFC layer is applied on each group ( L1×M/G → 1×K/G, with
K<<M ). After the bottleneck layers, L2 frames of dimension K/G
are spliced again ( 1×K/G → L2×K/G ), and the second set of
GFC layers (projection) is applied ( L2×K/G → 1×N/G ). After
the projection layer, ReLU and BN are employed. As in TDNN-F,
dropout and residual connection are also used.

The factorization of sTDNN-F can be viewed as a within-module
multi-stream TDNN-F variant with feature shuffling, where each
group forms its own stream. Note that a multi-stream TDNN-F variant
was presented in [34], where multiple parallel TDNN-F layers of
different dilation were applied to the same input, without feature
interchange between parallel streams.

D. Computational cost of the modules and comparison

We now consider the computational cost and size of the presented
modules, while also discussing the efficiency gains achieved by the
proposed sTDNN-F. Specifically:
• In the case of TDNN, its FC layer costs 2 L M N+N FLOPs (in

multiplications and additions), containing L M N+N parameters
(params), while BN costs 2 N FLOPs and has 2 N params.
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Fig. 3. The AVSR system of Section III, employing the proposed sTDNN-F
modules, with their input ( M ), bottleneck ( K ), and output ( N ) dimensions
listed. Depicted are the acoustic tower (bottom left) and the visual one (bottom
right, further detailed in Fig. 4). Features from both are concatenated and fed
to the bimodal network (middle). The network posteriors along with a bi-phone
language model are sent to the weighted finite-state transducer (WFST) based
decoder, yielding the recognized phonetic sequence (top).

• For the TDNN-F module, its first FC layer costs 2 L1M K + K
FLOPs and has L1M K + K params, the second FC layer
2 L2K N + N FLOPs with L2K N + N params, and finally BN
costs 2 N FLOPs with 2 N params.
• Finally, for the sTDNN-F, its bottleneck GFC layers require

2 L1(M/G)K+K FLOPs and L1(M/G)K+K params, the projec-
tion GFC ones cost 2 L2(K/G)N+N FLOPs and L2(K/G)N+N
params, while BN consumes 2 N FLOPs with 2 N params.

To provide an efficiency comparison between the three modules,
we assume identical input and output dimensions ( M=N ). Further,
for TDNN-F and sTDNN-F, we assume bottleneck dimensions equal
to a quarter of the input ones ( K = M/4 ). Finally, we assume that
the TDNN employs symmetric splicing of the current, bL / 2c past,
and bL / 2c future frames, with odd L = 3 , and that in the TDNN-F
and sTDNN-F modules splicing occurs with L1 = L2 = 2 (current
and one past frame), as in our experiments.

Under these assumptions, the TDNN module requires 6 M 2+ M
FLOPs, the TDNN-F costs 2 M 2+ 3 M/4 FLOPs, whereas for our
proposed module, the cost becomes M 2+5 M/4 for sTDNN-F-2 and
M 2/2 + 5 M/4 for sTDNN-F-4. If we approximate these costs using
only the squared terms, then TDNN-F requires 66% less FLOPs than
TDNN, while sTDNN-F-2 and sTDNN-F-4 require 83% and 92%
less FLOPs respectively, regardless of the value of M. It can be easily
deduced that similar gains hold for the model size (params).

III. RECOGNITION SYSTEMS

Next, we utilize the aforementioned modules in the AVSR system
architecture, together with suitable visual processing and speech
recognition components. In addition, we build an audio-only ASR
counterpart for performance comparisons. For development we ex-
ploit the Kaldi framework [35], and we employ weighted finite-
state transducer (WFST) based decoding that incorporates a bi-phone
language model (suitable for the recognition task of Section IV).

Fig. 4. Left: The five-layer 3D-pointwise MobiLipNetV3 (MbV3) CNN,
introduced in our earlier work [28] for efficient visual stream representation
and employed here for AVSR (visual tower of Fig. 3). Its input is formed
by splicing three consecutive mouth regions (see also Fig. 5). The input and
output dimensions of each CNN layer are also shown (in the format: number
of channels C × height H × width W ). Right: Detailed layer architecture
of the MbV3 module. More information can be found in [28].

A. ASR system

Our ASR system is bootstrapped from a traditional GMM-HMM
with MFCC features. This yields frame targets via forced alignment,
which help train a TDNN-WFST hybrid system on 40-dimensional
fMLLR features, whose architecture is similar to the left sub-network
of our AVSR system (Fig. 3). In more detail, a splicing layer
concatenates 11 fMLLR feature frames (current, 5 past, and 5 future
ones) that are then processed by an FC layer, followed by ReLU
and BN. Next, five sTDNN-F modules are applied, and a projection
layer maps the resulting representation to 1952 context-dependent
tied-triphone HMM states. Two ASR implementations are considered,
one with sTDNN-F modules of input dimensionality M = 256 and a
larger one with M = 1024. In both cases, M = N and K = M/4.

B. AVSR system

Our AVSR system, shown in Fig. 3, consists of one sub-network
for each modality and an audio-visual one that receives features
from both. The audio part is identical to the ASR network described
above, up to the final projection layer that is removed. On the other
hand, the visual sub-network (Fig. 3, right) commences with the
MobiLipNetV3 model, i.e. the resource-efficient five-layer CNN of
our recent work [28], also depicted in Fig. 4 for easy reference.
The model operates on three consecutive grayscale mouth regions,
extracted as described later, and it outputs 128-dimensional visual
representations at the video frame rate (30 Hz). These are upsampled
linearly to match the audio feature rate (100 Hz) and are further
processed quite similarly to the audio features. Specifically, five visual
feature frames are spliced together, an FC layer is applied that is
followed by ReLU and BN, and last, four sTDNN-F modules are
employed. At the final part of the AVSR system architecture, the
unimodal representations of the two sub-networks are concatenated
(early fusion). The resulting features are processed by the bimodal
network that consists of an FC layer that is followed by ReLU and
BN, two sTDNN-F modules, and a projection layer that yields HMM
state posteriors. Note that all unimodal sTDNN-F modules in our
AVSR system have M = N = 256 and K = 64, while the bimodal
ones use M = N = 512 and K = 192.

For speaker mouth localization and region-of-interest (ROI) extrac-
tion, the pipeline of [27] is used, as also depicted in Fig. 5. First, the
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Fig. 5. The visual pre-processing pipeline for extracting the mouth region-
of-interest (ROI) that is then fed to the CNN of Fig. 4.

input frame is converted to grayscale, and face detection is performed
using a ResNet-10 with single-shot detector network [36], available
in OpenCV v3.4 [37]. Then, facial landmarks are detected as in [38].
From those, four mouth landmarks are used, after median filtering
over a 7-frame window, to yield smooth mouth center, width, and
height estimates. Based on these, a grayscale mouth ROI is extracted
(approximately enlarged by 40% over the mouth width and height),
normalized to 64 × 64 pixels, to be fed to the MobiLipNetV3 CNN.

IV. EXPERIMENTS

A. Dataset and experimental framework

Our experiments are run on the popular TCD-TIMIT corpus [31].
This is about 8 hours in total duration, containing continuous speech
by 59 subjects that utter phonetically-rich TIMIT sentences with
a medium-size 6k-word vocabulary, recorded in ideal, studio-like
conditions by two cameras and a lapel microphone.

In the experiments, the frontal-view videos of the database are
used, available at a 1920× 1080-pixel resolution and 30 Hz video
frame rate. Further, to simulate noisy conditions, the clean audio
data of the corpus are distorted by additive white Gaussian noise at
six signal-to-noise (SNR) levels ranging from 20 dB to − 5 dB, thus
allowing for various training/testing scenarios to be considered. Here,
two ASR and two AVSR models are built for each of the TDNN-
based architectures investigated: (i) models trained on clean audio
data, thus evaluated on mismatched/unseen noise conditions (with
a notable exception when tested on clean audio), and (ii) models
trained on data from all audio conditions combined (referred to as
multi-condition training). Note that all recognition results are reported
on the official corpus speaker-independent test set (17 subjects) with
39 subjects used for training and 3 for validation, thus differing from
the setup of [39] where two test subsets were considered.

The evaluation of all ASR and AVSR systems employing different
TDNN-based modules concerns both their recognition performance
and resource efficiency. The former is reported on the TCD-TIMIT
test set in terms of phone error rate (PER), due to the data nature
(TIMIT recognition task), while the latter in terms of required
computations (in FLOPs per input frame) and number of parameters
used in all TDNN-based modules of the considered architectures.

B. Results

Our experimental results are reported in Table I, concerning four
different variations of TDNN-based modules, namely the traditional
TDNN (baseline), its factored variant (TDNN-F), and two versions

Fig. 6. Recognition performance on the TCD-TIMIT test set (in PER, %) of
various AVSR systems of Table I, as well as of the 1024-channel TDNN-F
audio-only ASR system (training conditions specified inside parenthesis).

of the proposed (sTDNN-F) with 2 and 4 groups. The table primarily
refers to the AVSR systems, with efficiency reported at its left-most
part and performance at various SNRs in its middle part for models
trained on clean audio or on all conditions. Note that audio-only ASR
performance on clean conditions is provided at the right-most section.

Concerning the AVSR models of Table I, it can be observed
that the most efficient architecture is the sTDNN-F-4, having for
example 81% less FLOPs and 67% less parameters than the TDNN
baseline. However, it yields the worst PERs among all systems
under multi-condition training. In contrast, the proposed sTDNN-F-2
module offers a better efficiency-performance compromise, remaining
significantly more computationally efficient than both the TDNN
(by 74%) and TDNN-F (by 35%, i.e. 2.48M vs. 3.79M FLOPs per
input frame), while also generalizing well in the mismatched scenario
(clean-audio training). There, it outperforms the more expensive
TDNN across all SNRs (except in clean conditions) and lags slightly
behind TDNN-F by an average of 0.65% absolute PER degradation
over all SNRs. Further, under multi-condition training, it outperforms
the TDNN-F at most SNRs, yet slightly lags the best-performing but
expensive TDNN by at most 1.4% in absolute PER degradation.

Some of the above AVSR results are also depicted in Fig. 6 for
better visualization. It is evident that the sTDNN-F-2 outperforms the
TDNN baseline when both are trained on clean audio, but slightly
lags it under multi-condition training. In addition to AVSR plots, also
shown is the performance of the best audio-only system (TDNN-F
with M = 1024) when trained on clean audio. It is evident that audio-
only ASR degrades rapidly as the SNR decays, significantly trailing
AVSR performance that exhibits better noise robustness.

The right-most section of Table I is dedicated to the performance of
audio-only ASR systems, trained and tested on clean conditions. As
mentioned in Section III-A, two module configurations are considered
( M = 256 and 1024) for all architectures. Note first that in all cases,
the audio-only PERs trail those of the corresponding AVSR systems

TABLE I
AVSR EVALUATION OF FOUR TDNN VARIATIONS. LEFT-TO-RIGHT: EFFICIENCY IN PER-FRAME FLOPS AND PARAMETERS (IN MILLIONS, ALSO SHOWN
IN % RELATIVE TO BASELINE); PERFORMANCE IN PER (%) ON THE TCD-TIMIT TEST SET AT VARIOUS SNRS WHEN MODELS ARE TRAINED ON CLEAN
AUDIO OR ON ALL NOISE CONDITIONS JOINTLY; PER OF AUDIO-ONLY ASR MODELS TRAINED AND TESTED ON CLEAN AUDIO FOR M = 256 AND 1024.

Network FLOPs parameters PER (dB) − clean-audio training PER (dB) − multi-condition training PER (ASR)
(M) rel.(%) (M) rel.(%) clean 20 15 10 5 0 -5 clean 20 15 10 5 0 -5 256 1024

TDNN 9.56 − 5.78 − 21.3 39.0 47.3 56.6 67.0 78.7 88.1 23.9 29.2 32.4 37.6 44.8 55.1 66.8 22.5 21.7
TDNN-F 3.79 60.35 2.89 50.00 20.7 37.5 43.7 50.7 58.7 69.6 81.3 23.7 29.9 33.5 38.9 46.7 56.1 65.6 22.8 21.2
sTDNN-F-2 2.48 74.05 2.24 61.24 21.4 37.6 43.6 51.2 60.1 70.5 82.2 23.6 29.8 33.6 38.6 46.0 55.5 65.4 24.1 22.0
sTDNN-F-4 1.82 80.96 1.91 66.95 21.5 37.2 43.4 51.5 60.8 71.6 82.8 24.9 31.0 34.4 39.4 47.0 56.8 67.1 25.0 22.3
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(trained and tested on clean audio). Note also that the lowest audio-
only PER is obtained by the 1024-channel TDNN-F (21.2%), fol-
lowed by the 1024-channel TDNN (21.7%). The proposed sTDNN-F
networks suffer significant PER degradation for M = 256, reaching
up to 25.0% PER. However, for M = 1024, they become competitive:
For example, compared to TDNN-F, the sTDNN-F-2 system yields
a slight only PER degradation (from 21.2% to 22.0% PER), but at
the benefit of significantly superior efficiency. Indeed, although not
shown in Table I, the sTDNN-F-2 requires significantly less FLOPs
(3.92M vs. 11.78M of the TDNN-F, per input frame), as well as
number of module parameters (3.76M vs. 7.70M). Finally, note that
the reported PERs are competitive to the literature, for example [39]
reports 23.5% and 21.6% PER on two test subsets of TCD-TIMIT,
using a six FC-layer DNN with 11-frame input splicing.

V. CONCLUSIONS

In this paper, we proposed a novel module for TDNN-like AVSR
network architectures, by replacing the fully-connected TDNN-F
layers with grouped ones for improved efficiency and inserting a
shuffle layer for retaining recognition performance. We integrated
the proposed module to an AVSR system, together with other visual
processing and speech recognition components, and we investigated
its performance and efficiency compared to TDNN-based alternatives
on the TCD-TIMIT corpus under two speaker-independent train-
ing/testing scenarios. The resulting sTDNN-F-2 based AVSR system
turned out 74% and 35% more efficient than the TDNN and the
TDNN-F ones, respectively, while maintaining similar recognition
accuracy and noise robustness.
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