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Abstract—Recent deep learning algorithms are known to
perform better for Automatic Speech Recognition (ASR) of adult
speakers, however, yet remains a challenge to recognize children’s
speech with the similar accuracy. Due to less availability of
children’s speech data to train the deep neural network, data
augmentation is one of the key research areas for children
ASR. In this paper, voice conversion-based data augmentation
using CycleGAN is explored and performance comparison with
and without data augmentation is presented. ASR experiments
were performed using TLT school corpus. In our experiment,
CycleGAN-based 200 hours of converted adult speech showed
good performance improvement with the reduction of 5.58%
WER compared to the baseline system. In addition, the combina-
tion of SpecAugment, speed perturbed, and CycleGAN converted
adult speech showed the highest reduction of 7.44% WER
compared to baseline system1.

Index Terms—Hybrid HMM/DNN architecture, CTC, atten-
tion, Transformer, speed perturbation, SpecAugment, speech
recognition, and ASR

I. INTRODUCTION

Language is the engine of civilization, and speech is its
most natural and powerful form, resulting in various successful
speech technologies, such as speech and speaker recognition,
text-to-speech synthesis, voice conversion, etc. Voice assistant
or Intelligent Personal Assistant (IPAs) is a device that uses
these technologies to provide various services through voice.
Voice assistants can be used in day-to-day life, e.g., in edu-
cation, retails, healthcare, inside our car or home. The voice
assistant needs to overcome many challenges to give consistent
services to the user irrespective of age and gender. Automatic
Speech Recognition (ASR) for children is one of the key
challenges in the literature. The voice assistants can be used
by the children for remote learning, playing games, in-vehicle,
entertainment, etc. However, there are several challenges in
children’s ASR.

Due to shorter vocal tract and smaller (i.e., smaller mass of)
vocal folds, children have higher fundamental frequency (FO)
and formant frequencies than those of adults. There are more
repetitive segments, stammering, and false start in children’s
speech as compared to the adult speech [1]. Children use

1The converted speech samples are provided at
https://preetx.github.io/Children-ASR-Samples/

to stretch the utterance primarily because of hesitation and
lack of language information [2], [3], [4]. End-to-end (E2E)
deep neural network (DNN) architecture showed a tremendous
growth for ASR task in the past few years [5]. As E2E
framework consists of a neural architecture, during training
the number of training samples plays a vital role [6], [7].
Generally, these ASR systems are trained on adult speech
and thereby does not perform well when tested on children’s
speech due to various acoustic differences between adult and
children’s speech [8]. There are different challenges associated
with training deep neural network, such as less amount of
children’s speech available for training. Even if the amount
of data used for children ASR will be the same as that of
adult ASR, the performance of children ASR will be poorer
than adult ASR (because of the acoustic variability and poor
spectral resolution due to sampling of vocal tract spectrum by
high pitch source harmonics) [9], [10]).

In this context, data augmentation is one of the well
established regularization techniques in the literature [11].
There are various conventional data augmentation techniques
for ASR system, such as SpecAugment, speed, and tempo
perturbation. SpecAugment operates on the principle of time
warping, frequency masking, and time masking [12], [13].
The children database has more variations in different acous-
tic parameters, such as pitch (F0), speaking rate. However,
SpecAugment does not introduces acoustic variability which
is one of the limitations of SpecAugment technique. Speed
perturbation is a technique which is used to generate the
audio data by re-sampling the audio signal by a factor α
[14]. This method introduces prosody variation in the database
resulting in the elimination of the limitation for SpecAugment
technique. It also introduces new speaker information into the
database which helps in making the E2E system robust. Tempo
perturbation also called speech rate perturbation is a technique
in which speech rate or tempo of the audio data is altered while
keeping pitch and spectral envelope the same [15]. Tempo
perturbation does not include any new speaker information
into the database, however, it modifies the speaking rate of
utterances present in the dataset. Data augmentation strategy
utilizing various GAN models explored in past including
WGAN-GP (Wasserstein GAN with gradient penalty) [16]
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and CycleGAN [17]. CycleGAN-based data augmentation has
shown significant performance improvement for children ASR
[16].

In this paper, data augmentation using CycleGAN is ex-
plored for end-to-end children ASR. To advance the research
on CycleGAN-based data augmentation, we propose novel
CycleGAN network inspired from its application in non-
parallel voice conversion [18]. It is an improved version of
previous CycleGAN network [16] incorporating three new
techniques:
• An improved objective (two-step adversarial loss)
• Improved generator (2-1-2D CNN and ConvTranspose

layer)
• Improved discriminator (Patch GAN).

Furthermore, techniques for improving CycleGAN training for
voice conversion task is also proposed. It is aimed to convert
large amount of adult speech corpus into children’s speech so
that the converted speech samples can be used for training
children ASR.

The rest of the paper is organized as follows. Section
2 briefly introduces the voice conversion using CycleGAN
and the novelty of paper for stable training of CycleGAN.
Section 3 introduces the experimental setup of CycleGAN
architecture and ASR system. In Section 4, experimental
results and spectrographic analysis are presented for baseline
and proposed system. Section 5 summarizes the paper along
with future research directions.

II. PROPOSED APPROACH

A. Voice Conversion using CycleGAN

For voice conversion, let a ∈ RD×N , and c ∈ RD×N

be the features belonging to adult class A and children class
C, respectively. Here, D is the feature dimension and N is
the number of frames. Then, the aim of CycleGAN is to
learn the mapping from GA→C , and GC→A. CycleGAN uses
four different loss functions in order to perform the voice
conversion task, which are as follows [18]:

Adversarial loss: It’s goal is to make feature GA→C(a)
indistinguishable from the children’s speech feature, c. In
particular,

Ladv(GA→C , DC) = Ec∼PC(c)[logDC(c)]

+ Ea∼PA(a)[log(1−DC(GA→C(a)))]. (1)

Cycle-consistency loss: For voice conversion, it is neces-
sary to preserve the context during conversion. The cycle-
consistency loss is used to meet that condition, which ensures
the network can learn the forward-inverse and inverse-forward
mapping simultaneously, i.e.,

Lcyc(GA→C , GC→A)

= Ea∼PA(a)[‖GC→A(GA→C(a))− a‖1]
+ Ec∼PC(c)[‖GA→C(GC→A(c))− c‖1], (2)

where ‖.‖1 is L1-norm and E[.] is expectation operator.

Identity-mapping loss: It is used to preserve the identity
of target class in the network. It is generally employed to train
the network for initial learning, i.e.,

Lid(GA→C , GC→A) = Ea∼PA(a)[‖GC→A(a)− a‖1]
+ Ec∼PC(c)[‖GA→C(c)− c‖1]. (3)

Two-step adversarial loss: We impose an additional adver-
sarial loss on circular feature to further improve adversarial
training of our GAN network. In particular,

L2−step(GA→C , GC→A, DC) = Ec∼PC(c)[logDC(c)]

+ Ea∼PA(a)[log(1−DC(GA→C(GC→A(c))))]. (4)

Full objective: Overall objective of the CycleGAN network
is given as:

Lfull = λadvLadv(GA→C , DC) + λadvLadv(GC→A, DA)

+ λadvL2−step(GA→C , GC→A, DC)

+ λadvL2−step(GC→A, GA→C , DA)

+ λcycLcyc(GA→C , GC→A)

+ λidLid(GA→C , GC→A), (5)

where λadv , λcyc, and λid are the weights associated with
adversarial, cycle-consistency, and identity-mapping loss, re-
spectively. These values are used as hyperparameters in the
network during training.

B. Stable training of CycleGAN

The high variations in feature space, making the learning
of the CycleGAN generator difficult and thereby causes insta-
bility in training. In our previous experiments, we observed
that the generator learning becomes too slow compared to the
discriminator due to the this reason. It results in collapse of the
entire CycleGAN network. To improve the CycleGAN training
for the voice conversion, we kept a lower limit or threshold
on discriminator loss, after which the training of discriminator
gets stopped. If the overall discriminator loss goes below 0.05,
the weight update will not take place for the discriminator, al-
lowing the generator to learn the mapping. Once the generator
learns the mapping, it automatically makes the discriminator
loss above 0.05, thereby including the discriminator for weight
update.

Based on synthetic speech, we observed during CycleGAN
training that due to the low weight of adversarial losses
(λadv = 1) compared to the other two losses, voice conversion
was not taking place as we desired. Since the weights of cycle
loss and identity loss are high (λcyc = 10, and λid = 5),
generator focuses more on reducing these losses than its
adversarial loss. This setup is desirable in the initial phase of
the training since it forces our generators to learn to reconstruct
original input feature. However, since adversarial loss has main
role in voice conversion, it is desirable to increase its weight
after generator had learned to reconstruct original features.
Hence, we kept on reducing λcyc and increasing λadv by a
factor of 1.2 after every two epochs.
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Fig. 1. Functional block diagram of proposed data augmentation approach for children ASR.

III. EXPERIMENTAL SETUP

A. Database

In this paper, TLT School corpus is used for ASR ex-
periments. The TLT-School corpus is obtained from INTER-
SPEECH TLT2020 shared task on ASR for non-native chil-
dren’s speech [19]. The corpus contains 3518 speakers of
age group between 9 to 16 years with three different English
proficiency stages. The duration of training, development, and
test corpora are 49 hours, 2 hours, and 2 hours, respectively.
The transcription consists of symbols of laughter, mispro-
nounced words, whispered speech, and special characters, such
as <unk-it>, for Italian, and German words.

To generate synthetic voices, My Science Tutor (MyST)
children database is used along with Libri clean 360 adult
speech database [20]. The MyST corpus contains unsubscribed
utterances from 1372 speakers with an age range between
8 to 11 years, and the duration of the corpus is 499 hours
[21]. This corpus is used for training CycleGAN because the
noise is very low compared to the TLT School corpus. In
addition, MyST corpus contains utterances of native English
speakers, Our initial experiments with TLT School corpus for
CycleGAN produced very noisy synthetic speech.

The Libri-clean-360 corpus is a subset of the Librispeech
corpus [22]. It consists of 363 hours of speech data collected
from 921 adult speakers. This corpus is used to train the
CycleGAN network for voice conversion. In addition, this
corpus is converted into children’s speech and those converted
utterances further utilized in training ASR.

B. CycleGAN Architecture

Generator:
For generator, we have used generator from CycleGAN-

VC2 network [18]. Input feature are first downsampled using

two strided 2-D CNN. For voice conversion, six 1-D CNN
residual layers are used. For upsampling layers, we have used
the two strided 2-D convolution transpose layer as opposed
to interpolation used in original CycleGAN-VC2 study in
[18]. Convolution transposed layer are primarily used so that
network can learn upsampling on its own. 2-D CNN and 1-D
CNN layers are bridged together using 1x1 convolution which
is applied before and after reshaping of the features.

Discriminator:
In previous GAN-based models, FullGAN (i.e., discrim-

inator with fully-connected layers) were used [23], [24],
however, studies have shown that assigning only a single
penalty to entire features using FullGAN can sometimes lead
to blurriness of features [25]. To alleviate this, we used
PatchGAN that assigns individual penalties to NxN patches of
features using CNN (i.e., discriminator with CNN as output
layer). PatchGAN increases difficulty of discriminator that
helps in generating more crispier (fine) features as observed
in computer vision literature [26].

C. CycleGAN training

In CycleGAN, two generators and two discriminators are
trained simultaneously in an adversarial manner [27]. For
voice conversion, we have extracted 24-dimensional MCEPs,
pitch (F0) contour, and aperiodicity using WORLD vocoder
[28]. 24-dimensional MCEPs are transformed using the Cycle-
GAN architecture whereas pitch contour is converted by using
logarithmic Gaussian normalized transformation. Aperiodicity
was used without any modification.

MCEPs are normalized with global zero-mean and unit
variance in the pre-processing stage. We used Adam optimizer
with betas β1 = 0.5, and β2 = 0.999. Values of 0.0004 and
0.0002 were taken as initial learning rates for generators and
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TABLE I
WER (%) COMPARISON FOR CONVENTIONAL DATA AUGMENTATION

SCENARIOS

Model Id System WER (%)
B0 Baseline - 1 30.94
B1 Baseline - 2 28.45
S6 B1 + SpecAugment 27.61
S7 B1 + SpecAugment + Speed Perturb 27.11

TABLE II
WER (%) COMPARISON FOR PROPOSED DATA AUGMENTATION

Model Id System WER (%)
S1 B0 + Converted male 27.55
S2 B0 + Converted female 27.12
S3 B0 + Converted male + Converted female 25.42
S4 S3 + SpecAugment 25.20
S5 S3 + SpecAugment + Speed Perturb. 23.50

discriminators, respectively. We used 10 seconds segments
(2001 frames) for our training of CycleGAN. Identity loss
(Lid) was used for first 104 iterations only. We trained our
model for 105 iterations with the batch size of 2. Learning
rate was decreased using exponential decay with the decay of
1.2 every 2x104 steps. Initially, we set λcyc = 10, and λid = 5.

D. ASR training

We have used ESPNET-based E2E ASR system [29]. We
adopted librispeech transformer model recipe in ESPNET [30].
80-dimensional Mel filterbank feature along with pitch are
used as feature set to train transformer model. LSTM-based
language model (LM) is also used with 5000 BPE throughout
the experiments [31]. We kept 0.6 as LM shallow fusion
weight.

IV. EXPERIMENTAL RESULTS

A. Baseline Systems

We have two baseline systems in this paper. For baseline 1,
we have trained the E2E ASR system with only TLT school
corpus. For baseline 2, we have augmented 100 hours of male
and 100 hours of female Librispeech subset into the TLT
school corpus and then trained the ASR system.

Table 1 shows the word error rate (WER) comparison for
conventional data augmentation techniques. Augmenting 200
hours of adult speech shows the relative WER reduction by
2.49%. However, only SpecAugment over children training
data reduces the performance WER by 3.33%. SpecAugment
and speed perturbation together shows the relative WER reduc-
tion of 3.83%. Hence, using convention data augmentation and
adding 200 hours of adult speech, system S7 shows absolute
reduction of 3.83% compared to the B0.

B. Data Augmentation results using CycleGAN

Table 2 shows the WER comparison for data augmenta-
tion using CycleGAN. Augmenting 100 hours of converted
male speech shows the relative WER reduction of 3.39%.
However, augmenting 100 hours of converted female speech
shows the relative WER reduction of 3.82%. In addition,

Fig. 2. Learning curves obtained during the training of transformer E2E
architecture with and without data augmentation.

augmentation of 100 hours of converted male and 100 hours
of converted female together (S3) shows the relative WER
reduction of 5.52% compared to the B0. We also explored
the significance of proposed method with conventional data
augmentation. Model Id S4 denotes SpecAugment on top of
proposed method. System S4 shows the relative WER reduc-
tion of 5.74% compared to the B0. However, Model Id S5

denotes SpecAugment and speed perturbation together on top
of the proposed method. System S5 shows the relative WER
reduction of 7.74% compared to the B0. Using conventional
data augmentation on top of proposed method (S5) shows
absolute reduction of 3.61% compared to the S7. Hence, using
synthetic children speech is more beneficial than using adult
speech for end-to-end children ASR.

We can observe from Table I that conventional data aug-
mentation methods, such as augmentation of adult speech
with children’s speech, SpecAugment and speed perturbation
contributes performance improvement of children ASR. How-
ever, the contribution is not significant in comparison with the
proposed approach.

C. Spectrographic Analysis

The spectrogram and pitch contour are shown in Fig.3 for
adult and synthetic children speech. From Fig.3, it can be
observed that children’s speech converted from adult speech is
showing characteristics that are similar to the children’s speech
signal.

Fig. 3. Spectrogram, pitch, and formant contours of (a) adult speech signal,
and (b) synthetic children’s speech signal generated from the same utterance
shown in Fig.3.(a). Highlighted box shows the formant and pitch contour shift
before and after passing through CycleGAN generator, GA→C .
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Thus, formant contours and pitch of the adult speech signal
are shifted upwards after passing the utterance through trained
Cycle-GAN generator,GA→C . In addition, the shape of the
pitch contour is mostly unchanged due to the ability of
the Cycle-GAN to reconstruct fine objects as observed in
computer vision literature.

V. SUMMARY AND CONCLUSIONS

In this work, we evaluated the performance of data aug-
mentation using CycleGAN for children ASR task. The ASR
system is built using E2E transformer model of ESPNET and
ASR experiments are performed on TLT school corpus. In
this paper, novel stratergies are discussed for stable training
of CycleGAN for voice conversion of adult speech into chil-
dren’s speech. The experimental results shows that the voice
conversion of adult female is giving better WER improvement
(i.e., reduction in WER) for children ASR. However, voice
conversion of male adult speech into children’s speech con-
tains some outliers. Our future work will involve exploration
of CycleGAN to enhance the quality of voice conversion of
male adult speech into children’s speech.
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