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Abstract—Recently, the topic of Few-Shot Learning (FSL)
is emerging as a radical direction in machine learning, well
established with a variety of paradigms and network realiza-
tions for image recognition. However, FSL is yet to emerge in
speech recognition and allied topics. In this paper, we adapt an
FSL paradigm ‘matching networks’ to the problem of speech
recognition, in a first of its kind attempt, to different tasks such
as multi-speaker small-to-medium vocabulary word recognition,
monolingual and cross-lingual phoneme recognition tasks under
mel-spectrogram and single-frame feature representations. The
key to FSL is the ability to use extremely small number of
training utterances, e.g. as low as 1 exemplar / class, as a N-
way K-shot learning problem for large N and very small K (e.g.
K=1 to 10). We show a remarkably high performance for each
of the different speech recognition tasks considered here with
matching networks, consistently requiring only very few ‘shots’
of exemplars/class, even while surpassing the performance of a
direct application of KDE (kernel density estimation) without the
matching network’s embedding. This adaptation sets the basis for
applying the matching network framework to continuous speech
recognition and cross-lingual ASR with extremely low training
requirements in the target test language.

Index Terms—few-shot learning, matching networks, word
and phoneme recognition, low resource, cross-lingual speech
recognition

I. INTRODUCTION

Traditionally, machine learning and deep learning paradigms
have been associated with large training data considerations,
specifically to leverage the underlying optimization aspects,
such as in the estimation of large number of parameters
(network weights) in deep-learning and to generalize to unseen
test data adequately. In contrast, the recently emerging trend of
‘Few-Shot Learning’ (FSL) seeks an alternative to such large
data paradigms and computational frameworks for learning,
by pointing to the minimal ‘training’ data required by human
cognitive mechanisms (i.e. a child learning a visual class such
as a ‘giraffe’) without having to be exposed to millions of
diverse examples of the class, essentially working towards the
‘small data AI’ scenarios. In addition to posing the baseline
of human cognitive performance with limited training sam-
ples, FSL approaches are highly relevant in scenarios where
supervised data is hard to get in large sizes, and any small
size training paradigm (such as FSL) is bound to make an

important difference, if it can offer performances comparable
to large-data conditions.

This emerging topic of FSL has witnessed a wide va-
riety of paradigms, theoretical frameworks and techniques
and corresponding network realizations [1]. Few-shot learning
framework, as the term implies, is defined to classify a
test (unseen) sample (e.g. image) from ‘few-shots’, i.e. few
examples per class, for instance, as few as 1 to 5; the specific
case of having 1 example to learn and classify is referred
to as ‘1-shot learning’. Being an emergent topic of research,
FSL has been successfully formulated and applied to a certain
classes of classification problems, e.g. image classification [2],
image retrieval [3], object tracking [4], gesture recognition [5],
language modeling [2]. In general, all current FSL approaches
use prior knowledge of various kind (e.g. data, model and
algorithm) to reduce the so-called ‘sample complexity’ defined
as the number of training samples needed to guarantee the loss
of minimizing empirical risk.

Specifically, we examine a ‘model-based’ (embedded learn-
ing) prior-knowledge paradigm termed ‘matching networks’
[2] for a class of speech recognition tasks. Importantly, our
work is motivated by noting that the frameworks of FSL
in general (and matching networks in particular), have not
been addressed or applied to problems in speech recognition,
where the large-data requirements for current deep-learning
paradigms are intense, and any efforts to establish ‘small-
data’ approches with acceptable performances can make a
substantial difference, impacting the size of data required for
realizing any given performance limit.

In our work, we examine a range of tasks such as word-
recognition and phoneme-recognition under different input
representations such as mel-filter spectrograms and single-
frame (with context splicing) feature vector representations -
leading to important implications for end-to-end continuous
speech recognition, which we present in a companion submis-
sion [6] - where we propose an adaptation of the ‘matching
networks’ framework within a CTC formulation for end-to-
end training and continuous speech decoding; e.g. training the
network in a possibly high-resource language, and applying it
for decoding continuous speech of a target ‘very low’ resource
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language, with as little as ‘few hundreds’ of single-frame
features of each phone class.

While noting that FSL has not been applied to speech
recognition so far, we now contrast our work (based on
matching networks for FSL) with a related work that comes
closest to our objectives in speech recognition. Recently, in
what can be viewed as a problem defined close to FSL, [7]
adopt a zero-shot learning framework inspired by approaches
in computer vision and propose the Universal Phonemic Model
(UPM) to apply zero-shot learning to acoustic modeling. In
relation to this work, our work attempts FSL in classifying
unseen phonemes (not seen in the training support set), but
calls for a very ‘few-shot’ examples in a test-support set
defining the target task, which can also be a cross-lingual
scenario.

II. MATCHING NETWORKS

The central theme of matching networks is to perform
FSL during ‘inference’ by using a small set of K ‘few-
shot’ samples (examples/class) to classify a ‘test’ sample
within a posterior estimation method based on kernel-density
estimation (KDE) and k-nearest neighbor (KNN) based clas-
sification [2]. This also belongs to metric-learning problem
of learning the metric between the few-shot samples and
test sample, which in matching networks takes the form of
a cosine-similarity based attention mechanism. The attention
form of metric further incorporates an embedding (of the few-
shot samples and test sample), learnt during ‘training’, from
prior knowledge in the form of training samples drawn from
classes that are not part of the test problem, i.e., the test class
belongs to a set of classes not seen during the training of
the embedding functions. In the following, we first define the
KDE-KNN classification generalization in matching networks,
that forms the ‘inference’ part, followed by the actual matching
networks ‘training’ formulation which learns the embedding
functions constituting the network parameters.

A. Inference

We define the FSL ‘inference’ problem as a N -way, K-shot
learning problem, wherein, a test sample x̂ (e.g. an image) is
to be classified as one of N class labels (visual objects), by
using only the very few K-shot examples. This K-shot data
is referred to as ‘test support set’ of k samples, which are
input-label pairs S′ = {(xi, yi)}ki=1, with k = NK. Here,
yi is one-hot encoded vector of dimension N . Rightfully, in
conventional classification, this is the ‘train’ set of exemplars
on which the classification depends on. Referring to this as
the ‘test’ set is to distinguish from yet another ‘train’ set that
matching networks use to learn ‘prior-knowledge’ in the form
of embedding functions, further used in the FSL of N -way,
K-shot classification of the test sample.

The inference part of FSL by matching networks maps
the test sample x̂ into a probability distribution over output
labels ŷ by performing the KDE/KNN generalization posterior
estimate as in Eqn. (1), using the test support set S′ of k
samples.

P (ŷ|x̂, S′) =
k∑
i=1

a(x̂, xi)yi (1)

Here, ŷ is the set of N class labels the test sample can
belong to. The posterior probability distribution over the set ŷ
is P (ŷ|x̂, S′) from which the maximum a posteriori (MAP)
prediction yields the class label to which x̂ is classified
as. Eqn. (1) gives the output for a new class as a linear
combination of the labels in the test support set S′, with
the linear combination weights as the attention mechanism
a, which is essentially a metric between x̂ and each of the
few-shot samples xi in S′. In matching networks, a(., .) is
defined by Eqn. (2) as the softmax over the cosine similarity
c with embedding functions f and g being appropriate neural
networks (possibly with f = g) to embed x̂ and xi respec-
tively. The learning of the embedding functions f and g are
dealt with under ‘training’ in the next sub-section.

a(x̂, xi) =
ec(f(x̂),g(xi))∑k
j=1 e

c(f(x̂),g(xj))
(2)

This yields the inference ‘with matching networks’ as in
panel C in Fig. 1). We also define the inference ‘without
embeddings’ as the ‘baseline system’, i.e., when there is no
embedding from the matching network training, as c operating
directly on x̂ and xi. This is as in panel B in Fig. 1, which
represents a non-FSL setting.
B. Matching networks training

As illustrated in panel A of Fig. 1, the matching network
training involves learning the embedding functions f and g
from a ‘training’ support set S = {(xi, yi)}ki=1 defined as a
P -way, Q-shot set, i.e., with k = PQ. S comprises P classes
not seen in the test-support S′ and is hence referred to as the
train-support set. Q is the number of examples per class in
S. The matching network training finds the optimal network
parameter θ = (f, g) by maximizing the objective function as
in Eqn. (3).

θ = argmax
θ
EL∼T

ES∼L,B∼L
 ∑
(x,y)∈B

logPθ(y|x, S)


(3)

Here, a batch B = (x, y) provides the set of ‘train’ samples
on which the log-likelihood of the posterior probability of the
class label y of sample x, i.e., Pθ(y|x, S) as estimated by Eqn.
(1), is maximized as a function of the network parameter θ =
(f, g). This maximization is carried out over various sampling
of S,B from a label set L drawn randomly (sampled) from a
given training task T made of a super-set of class-labels, i.e.,
S inherits the class labels of the ‘train’ task T via a label set
L sampled from T , and B defines the set of input-label pairs
(x, y) likewise sampled (like S) from L, sharing the same
label set as (but a set of samples x distinct from) S.

The effectiveness of matching networks lies in this learning
of θ = (f, g) as the embedding functions encapsulating the
prior knowledge available in the training task T through the
train support set S, on to the inference in Eqn. (1) which in
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Fig. 1. Matching Networks: Panel A - training using Eqn. (3); Panel B - inference without matching networks; Panel C - inference with matching networks;
Panel D - Adaptation of the network to phoneme recognition task

turn uses the attention mechanism derived through the cosine
similarity metric c on the embeddings f(x̂) and g(xi). This
is illustrated in panel C of Fig. 1. Here it can be noted that
this panel sets up the same inference as in panel B but in
the embedding space f(x̂) and g(xi) - resulting in highly
enhanced class compaction (decreased intra-class variance)
and increased inter-class separability. This generalizability of
(f, g), learnt from S on to S′ is what gives the FSL advantage
for matching networks, a result we will see in the forthcoming
sections for speech recognition tasks, particularly when S′ is
aligned with S in terms of having classes that share several
types of similarity such as in terms of lower level abstrac-
tions (e.g. acoustic-phonetic features in the spectrographic
representations) or in terms of classes that exhibit similarity,
such as within words or broad phoneme categories or across
languages.

III. ADAPTATION TO SPEECH RECOGNITION

We have adapted the matching networks formulation for
a suite of speech recognition tasks, such as i) word level
recognition from small to medium vocabularies from within
TIMIT dataset, ii) phoneme recognition from within TIMIT
and applied in a cross-lingual manner to another language
Kannada (an Indian language) and iii) single-frame (frame-
wise) phoneme recognition from within TIMIT and applied in
a cross-lingual manner to Kannada.

Our motive in adapting the FSL network to the above 3
sets of tasks is to a) establish that the FSL paradigm, possibly
in a first attempt of its kind, applies to speech recognition
tasks, both in a mono-lingual and cross-lingual setting, b)
to show the high performance behavior of the matching
networks framework to these tasks (for very few shots, in
comparison to the large data requirements usually needed for

realizing similar performances using current state of the art
deep learning techniques) and c) the basis and potential for
such a set of phoneme-level results to extend to continuous
speech recognition [6], wherein the advantages of realizing
low PER/WER systems by incorporating matching networks
in the acoustic modeling and decoding frameworks leads to
breakthroughs in the kind of ‘very low’ data requirements such
systems will need with FSL incorporated.

The main adaptation in applying the matching networks to
the speech recognition task involves using mel filter bank
(FB) spectrogram representations a) (40 filter banks × 58
frames) for the word-level experiments and b) (40 filter
banks × 154) for the phoneme experiments, with the variable
length words/phones time-normalized using ‘space-sampling’
interpolation and warping [8] and c) (39 MFCCs × 11) single-
frame feature representation for each frame centered within a
± 5-frame window.

The matching networks use a 4-layer convolutional neural
network (CNN) for learning the embedding (f and g, with f =
g); in each case the CNN takes the patch of 40×58 or 40 ×
154 or 39 × 11 as input and yields a corresponding embedding
in various higher dimensions in which the inference of Eqn.
1 is carried out as in Panel C in Fig. 1. As an example, Panel
D in Fig. 1 shows the matching network for the phone-level
experiment with the 40 × 154 mel filter bank spectrogram
representation.

IV. EXPERIMENTS AND RESULTS

We have conducted experiments on tasks as outlined in the
table in Fig. 2. This table shows the type of different tasks
and the associated data-set and definition of T, T ′, S, S′ as
relevant to the configuration of the matching networks. The
corresponding results can be seen in the performance plots
(%accuracy) in Figs. 3 to 5. We discuss the experiments and
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Fig. 2. Experimental scenarios: Matching networks for word and frame-wise phoneme recognition tasks

results in the following with reference to this Table in Fig. 2.
In all cases, the FSL advantage of matching networks can be
noted, particularly in comparison to the very poor performance
of the ‘baseline’ inferencing ‘without embeddings’ from the
matching networks (as in Panel B in Fig. 1) and referred to
as ‘Baseline Cosine Similarity’ in Figs. 3, 4 and 5.

Fig. 3. Expts # 1, 2: word-level experiments

Mel FB spectrogram word-level experiments: Rows 1 and
2 show the configurations with T defined over 21 words from
sa1, sa2 sentences in TIMIT, with S as P = 5, Q = 5 and
made to generalize to a unseen set of 1276 words from non-
(sa1, sa2) sentences, for 2 cases - Fig. 3 (top) shows the
accuracy for varying shots (1 to 6) for N = 100 sampled from
the 1276 set and Fig. 3 (lower) shows the accuracy for varying
vocabulary N = 5 to 400 sampled from 1276 words, but with
fixed shots K = 5. The remarkable performance advantage

Fig. 4. Expts # 3, 4 and 5: phoneme-level experiments

of FSL matching networks (with embeddings) for very few
shots (and increasing shots) over the non-FSL baseline can be
noted.
Mel FB spectrogram phoneme-level experiments: Rows 3,
4 and 5 show the configurations for vowel-based experiments
drawn from TIMIT with different T and T ′ definitions in
each row. Row 3 shows the generalization ‘within’ the 14
vowel + diphthong set, and Row 4 shows the generalization
across a 7-7 split of the 14 vowels representing an ‘across’
vowel generaliation. Fig. 4 (top) shows the accuracy variation
for these 2 cases, with K-shots varying from 5 to 200 and
the excellent FSL performance can be noted. In an important
experiment for cross-lingual generalization of vowels, Row 5
shows T (and S) as TIMIT English vowels and T ′ (and S′)
as Kannada vowels. Fig. 4 (lower) shows the accuracy for this
case, for varying K (10 to 50) for different Q = 10 and 20;
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Fig. 5. Expts # 6, 7, 8: single-frame phoneme-level experiments

in each case the FSL advantage can be noted - and especially,
the impact of increased Q on lifting the performance profile
can also be noted. This points to the importance of the ‘train’
support set size P,Q in determining the generalizability of the
learnt embeddings f, g.
Single frame phoneme-level experiments: Rows 6, 7 and
8 show the experiments of a different nature - that of using
single frame representations for phoneme classification - both
within TIMIT (English) and from TIMIT (En) to Kannada
cross-lingual scenarios for all the phonemes of the datasets
/ languages. Row 6 shows a T , T ′ split of (20, 19) of the
TIMIT reduced phone set of 39 phonemes - indicating ‘across’
phoneme generalization of the FSL learning. Fig. 5 (top)
shows the accuracy for S′ = 19 and K-shots 1 to 500, and Fig.
5 (middle) shows the accuracy for S′ = 39 and K-shots 5 to
200. The FSL advantage can be clearly noted. Fig. 5 (bottom)
shows the cross-lingual (English 39 phones to Kannada 56
phones) performance with K-shots varying. For S′ as 5-way
sampled from 56 Kannada phones, the performance profile
is significantly high, while for S′ as all the 56 phones, the
performance profile understandably is lower, but nevertheless
giving a response proportional to K-shots. Note that K = 400
single frame vectors correspond to a very low data condition
of merely 4 secs of target Kannada sentences.

V. DISCUSSION

Based on the above set of experiments and very consistent
results of FSL advantage by the matching networks across

word-level, phone-level and cross-lingual settings (particularly
in comparison to the inference ‘without matching networks’),
these results reflect strongly in extending these scenarios to
continuous speech recognition [6]. One of the pivotal infor-
mation is the posterior probability vector (P (ŷ|x̂, S′)) for a
single frame test vector x̂; all of the results above clearly
substantiate the significant ‘sharpening’ of this posterior prob-
ability vector by the matching networks and this in turn has
important implications in all posterior based frameworks (e.g.
Connectionist Temporal Classification or CTC formulations)
in deep-learning based acoustic-modeling and decoding on the
posterior vector sequence, for an input sequence of test vectors
x̂ as in continuous speech [6]. This would lead to applying FSL
based matching networks for cross-lingual speech recognition,
where a sufficient T and S (from a conventional large resource
language) can be used to learn f, g which in turn impacts the
performance for a few-shot inference in a target low-resource
language defining T ′ and S′.

VI. CONCLUSIONS

We have adapted a few-shot learning framework ‘matching
network’ for a suite of speech recognition tasks, by extending
the framework to work with various representations at word-
level, phone-level and cross-lingual settings. We show a re-
markably high performance of each of the different speech
recognition tasks, for the matching network FSL paradigm,
consistently requiring only very few ‘shots’ of exemplars/class,
even while surpassing the performance of a direct application
of KDE (kernel density estimation) without the embeddings
from the matching network. This adaptation sets the basis
for extending the matching network paradigm to continuous
speech recognition and for cross-lingual ASR with extremely
low training requirements in the target test language.
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