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Abstract—In this paper, we propose a novel supervised clus-
tering with triplet (SCT) loss that effectively learns disentan-
gled representations for Arabic dialect identification (ADI). To
improve the performance of ADI using latent representation
based approaches, we need to extract embeddings that include
only dialect related information by dissociating all the irrelevant
information such as gender, channel, and speaker. In consid-
eration of the embedding-level distribution, our proposed SCT
loss minimizes intra-class variations and maximizes inter-class
variations. Specifically, it uses the centroid of each dialect as
a triplet component, thereby avoiding the issue of choosing
an undesirable triplet component due to random sampling.
Experimental results on the ADI-17 dataset show that our
proposed method significantly outperforms conventional state-
of-the-art methods in terms of the identification accuracy.

Index Terms: Arabic Dialect Identification, Disentangled
Representation, Supervised Clustering, Triplet Loss

I. INTRODUCTION

Arabic is the mother tongue of more than 350 million people
in 22 countries [1]. Therefore, Arabic is frequently spoken
in dialects rather than a standard form, and more than 30
different Arabic dialects exist [2]. Since Arabic dialects vary
significantly both in semantics and phonetics [3], it is not
easy to implement an automatic speech recognition system that
can be applicable to all dialects. As a result, Arabic speech
assistants are relatively under-resourced; for example, Google
assistant only supports some services for modern standard
Arabic and a few dialects (e.g., Egyptian and Saudi), and
Alexa does not support Arabic at all [4], [5]. However, there
is potential to further extend the capabilities of Arabic speech
assistants if information on dialects is utilized.

In order to aid research in Arabic dialect identification
(ADI), the fifth Multi-Genre Broadcast (MGB-5) challenge
recently included the task of Arabic dialect identification for
17 different dialects (ADI-17) using about 3,000 hours of
data that was collected from YouTube [6]. In [7], several
models for the ADI task were investigated, such as ones based
on i-vectors, x-vectors, end-to-end x-vectors with a softmax
output layer, and an end-to-end CNN-based model with a
global statistic pooling layer. The latter model was trained
with different losses using softmax, tuplemax and additive
margin softmax, and was used as a baseline in MGB-5 for the
ADI task [6]. A transformer network model [8] was recently

developed based on the self-attention technique to capture long
range dependencies.

However, in [9], it was experimentally shown that rep-
resentations from the baseline model in the ADI challenge
contained not only dialect information, but also non-dialect
information such as gender, channel, and speaker related
representations. The presence of such superfluous information
can cause difficulties in training that hurt a model’s perfor-
mance. In order to address this issue, an effective candidate
approach is disentanglement representation learning, which
has been explored thoroughly in computer vision and speech
domains for dissociating target-specific feature representations
from unrelated ones [10], [11], [12], [13], [14]. In [13], a
disentanglement representation learning strategy was adopted
for speaker identification to obtain speaker-related information
using adversarial training with an autoencoder architecture. To
effectively obtain speaker-specific embeddings by minimizing
intra-class variation and mutual information with residual
embeddings, [14] proposed identity change loss and mutual
information loss criteria. However, they did not explicitly
address any methods to maximize inter-class variations.

Triplet loss [15] is a suitable alternative for concurrently
minimizing intra-class variations and maximizing inter-class
variations. When we design triplet loss, it is crucial to select
positive and negative inputs in dictionary pools [16]. Since
finding all possible triplet combinations are computationally
impractical, most existing methods utilize a random selection
approach. However, this method is often not an optimal
choice because there is no way to tell whether the selected
examples are effective for training or not [16]. One selection
method that aims to solve this problem is to design a class-
dependent handcrafted dictionary pool, but this process is
time-consuming [16], [17].

Clustering is a popular approach for vector quantization to
group a large set of training samples and represent them as
their centroids [18]. k-means clustering is one of the most
famous clustering methods [19], which minimizes the square
of intra-cluster sums. Interestingly, the minimization criterion
is equivalent to the maximization of the square of inter-cluster
sums. However, such clustering methods have to evaluate
considerable pairs of training samples to successfully achieve
clusters of high quality [19].
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(a) The disentanglement model (b) The proposed model

Fig. 1. Overviews of the disentanglement model and the proposed model.

In this paper, we propose a method that incorporates a
clustering-based contrastive loss to disentangle dialect-related
representations learned for the ADI task. The specific contribu-
tions of our work are as follows: 1) we establish a connection
between k-means clustering and the triplet loss; 2) we propose
a novel supervised clustering with triplet (SCT) loss to concur-
rently minimize intra-class variations and maximize inter-class
variations; 3) we obtain cluster means in a supervised manner
and use them as centroids in order to avoid the construction
of the dictionary pools of the positive and negative inputs in
the triplet loss; 4) we demonstrate the effectiveness of the
proposed SCT loss with the disentanglement network model
for obtaining discriminative dialect embeddings from the ADI-
17 data set.

II. RELATED WORKS

A. Disentangled representation

Representation disentanglement is a technique to estimate
latent space embeddings by dissociating target-related char-
acteristics from other unneeded ones so that the estimated
target embeddings are more effective for downstream tasks
[10]. Adversarial training with an autoencoder architecture is
a popular method to achieve such dissociation goals [11], [12].

In [13] a disentanglement model for speaker recognition
task was proposed. As shown in Fig. 1(a), two encoders,
Ed and Er, are utilized to embed speaker identity related
information fd and residual information fr, respectively. The
two output embeddings fd and fr are then concatenated and
fed into the decoder, which performs reconstruction. The
reconstructed output of the decoder and the original input are
then evaluated. The disentanglement network model is trained
with the following loss functions.

1) Identity classification loss: The target information fd is
obtained by the identity encoder Ed, which is trained using
the following cross-entropy loss:

Ld = −
C∑
i=1

yi log
(
softmax

(
f id
))
, (1)

where C is the total number of classes and yi is the class
label.

2) Adversarial classification loss: The residual information
fr is given by the adversarial encoder Er, which is trained
using a uniform distribution 1

C without any labels as follows:

Ladv =
1

C

C∑
i=1

log
(
softmax

(
f ir
))
. (2)

3) Reconstruction loss: Since the combination of the iden-
tity embedding fd and the residual embedding fr involves the
original input information, the concatenated embedding of fd
and fr is fed into the decoder D, which is trained using an
L2-norm distance between the reconstructed information and
the original input information x as follows:

Lrec =
1

2
‖D (fd ⊕ fr)− x‖22 , (3)

where ⊕ is the concatenation operation.

B. Triplet loss
Triplet loss has been extensively and successfully employed

for many applications (e.g., face and speaker identification)
[15], [20]. It uses three different training inputs (xa, xp, xn),
where xa is an anchor, xp is a positive input from the anchor
class, and xn is a negative input from a different class. The
triplet loss naturally pushes the anchor close to the positive
input, but far from the negative input as follows:

LT = max
(
‖E (xa)− E (xp)‖22 − ‖E (xa)− E (xn)‖22 +m, 0

)
, (4)

where E (·) represents the feature embedding function, and m
indicates a margin between positive and negative pairs.

C. k-means clustering
Clustering has been extensively studied as a tool for unsu-

pervised learning [21], [22]. k-means clustering [19] is one
of the most well-known and popular algorithms, and its loss
function is defined as:

Lkm =

k∑
i=1

∑
x∈Si

∥∥x− µi∥∥2
2
, (5)
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Fig. 2. The proposed supervised clustering with triplet (SCT) loss.

which aims to partition the N observations
{
x1, x2, . . . , xN

}
into sets S =

{
S1, S2, . . . , Si, . . . , Sk

}
. µi is the mean of

each class in Si. In the assignment step of k-means clustering,
each observation is assigned to the nearest mean as follows:

Si =
{
xa :

∥∥xa − µi∥∥22 ≤ ∥∥xa − µj∥∥22 ∀j, 1 ≤ j ≤ k} , (6)

where xa is an observation which is assigned to Si, and each
mean at time t is updated as follows:

µit =
1∣∣Sit−1∣∣

∑
xj∈Sit−1

xj . (7)

III. PROPOSED METHOD

A. Overview

In this section, we present a novel supervised clustering
with triplet (SCT) loss to minimize intra-class variations and
maximize inter-class variations in a disentanglement model
(see Fig. 1(b)). The proposed SCT loss is illustrated in Fig. 2,
where the distance between the anchor xa and a positive class
mean µp is encouraged to be minimized, while the distances
between it and negative class means µn are forced to be
maximized.

Similar to the disentanglement model in Fig. 1(a), the two
encoders Ed and Er are used to embed the dialect related
information fd and the residual information fr, respectively.
The two embeddings fd and fr are then concatenated and fed
into the decoder D to reconstruct the original input informa-
tion. In our proposed disentanglement model, we compute the
SCT loss on the output of the dialect encoder Ed to address
the dialect-related information. The dialect embedding fd is
fed through a linear projection layer Elp for dimensionality
reduction of the high dimensional data, resulting in a lower
dimension embedding flp.

B. Supervised clustering with triplet (SCT) loss

Given a set of observations in a mini-batch
{
xi, yi

}B
i=1

,
where xi is a training sample, yi is its corresponding label,
and B is the batch size, our supervised clustering with triplet
(SCT) loss is as follows:

LSCT = max

∥∥∥filp,a − µp∥∥∥2
2
−

1

|Sn|
∑

µn∈Sn

∥∥∥filp,a − µn∥∥∥2
2
+m, 0

 ,

(8)

Here, f ilp,a = Elp
(
Ed
(
xia
))

indicates the representation for
the anchor input xia, µp is the mean of the positive class, and
µn is the mean of the negative class. We define a subset Sn
of top-q negative class means as follows:

Sn =
{
µjn : closest

(
f ilp,a, µ

j
n, q
)
, 1 ≤ j ≤ C, j 6= p

}
, (9)

which includes the top-q closest negative classes to the anchor
input based on the L2-norm distances. The purpose of select-
ing the top-q negative classes is to concentrate on maximizing
the inter-class variations near the anchor class. This selection
process offers partial compensation for any noisy labels in the
maximization problem of the inter-class variations.

In order to avoid the recalculation of each mean in equation
(7) and the memory allocation of all the training samples, the
corresponding class mean of the anchor class is incrementally
updated every batch as follows:

µit = λµit−1 +
f ilp,a − µit−1

zit
, (10)

where λ is a forgetting factor and zit = zit−1 + 1 is the number
of averaged samples at time t. Since the clustering means for
the positive and negative inputs in the triplet loss are assigned
by considering the class labels, this achieves a supervised
approach to clustering.

1) Relationship between k-means clustering and triplet
loss: In equation (6), k-means clustering assigns the target
sample xa to the corresponding clustering set when only the
condition

∥∥xa − µi∥∥22−∥∥xa − µj∥∥22 ≤ 0 is satisfied. However,
contrary to the acceptance condition, the rejection condition
is given by:

∥∥xa − µi∥∥22 − ∥∥xa − µj∥∥22 > 0, which can be
connected to the triplet loss function (see equation (4)) as
follows:

LCT = max
(∥∥E (xa)− E

(
µi

)∥∥2
2
−

∥∥E (xa)− E
(
µj

)∥∥2
2
+m, 0

)
.

(11)
As such, equation (11) establishes a relationship between k-
means clustering and the triplet (CT) loss.

C. Overall objective function

The overall objective function of our proposed network
model is given by a weighted sum of 1) the dialect identi-
fication loss Ld, 2) the adversarial loss Ladv, 3) the recon-
struction loss Lrec from the disentanglement network, and 4)
the proposed SCT loss LSCT:

Ltotal = αdLd + αadvLadv + αrecLrec + αSCTLSCT, (12)

where αd, αadv, αrec and αSCT are adjustable hyper-
parameters.
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(a) The disentanglement model (b) The disentanglement model with IC (c) The disentanglement model with the proposed SCT

Fig. 3. The t-SNE plots of extracted embeddings from each model such as (a) the disentanglement model [13], (b) the disentanglement model with the IC
loss [14] and (c) the disentanglement model with the proposed SCT loss.

TABLE I
PERFORMANCE RESULTS OF THE DISENTANGLEMENT MODEL WITH AND WITHOUT THE PROPOSED SCT LOSS USING ADI-17 DATA SET

SCT Loss Dev. Set Accuracy (%) Test Set Accuracy (%)
(< 5s) (5 ∼ 20s) (> 20s) Overall (< 5s) (5 ∼ 20s) (> 20s) Overall

without 71.83 79.13 87.85 79.20 73.15 80.89 86.31 78.30
with 84.67 90.51 95.09 88.83 84.86 90.22 94.35 88.45

TABLE II
PERFORMANCE COMPARISON OF ACCURACIES FOR ADI STATE-OF-THE

ARTS

Method Dev. Set
Accuracy (%)

Test Set
Accuracy (%)

i-vector [7] 59.7 60.3
x-vector [7] 71.0 72.1
E2E (x-vector) [7] 76.6 77.8
E2E (Softmax) [7] 83.0 82.0
E2E (Tulemax) [7] 78.6 78.6
E2E (AM-Softmax) [7] 62.5 63.7
Transformer [8] 83.2 82.5
Disentanglement [13] 79.2 78.3
Disentanglement + IC [14] 80.1 80.5
Disentanglement + Proposed SCT 88.8 88.5

IV. EXPERIMENTS

A. Data sets

In our experiments, we use the ADI-17 dataset from the
MGB-5 challenge [6], [7], which consists of Arabic speech
data obtained from YouTube. The training set contains 3,033.4
hours of speech, the development set includes 24.9 hours, and
the test set has 33.1 hours. Each utterance also falls under one
of three duration ranges: short (< 5s), medium (5 ∼ 20s) and
long duration (> 20s).

B. Experimental settings

According to the disentanglement model in [13], the net-
work architectures of the two encoders Ed and Er are based
on ResNet-34 [23] with a global temporal pooling (TAP) layer
to fix the length of input features. The decoder architecture
is followed by three fully connected layers and ten trans-
posed convolutional layers [24]. The linear projection network
Elp includes three layers of sizes 512× 256, 256× 128 and

128× 64. The training batch size is set to 17, where one
sample from each class is randomly selected. The input
utterances are randomly segmented into 5 second chunks. A
25ms window is utilized with a 10ms hop size, and mel-
spectrograms of size 320× 257 are constructed with an FFT of
size 512. The Adam optimiser [25] is used for model training,
with initial learning rate 10−4 and learning rate decay of 10%
every 10 epochs. In the SCT loss, the margin m is fixed at 1,
and the forgetting factor λ is set at 0.99. Each weight for the
overall objective function in equation (12) is empirically set
as follows: αd = 1 , αadv = 0.1, αrec = 0.1 and αSCT = 0.1.
We empirically fixed the top-q number of the negative class
means with q = 5.

For performance evaluation, we implement and compare
the original disentanglement model [13], the disentangle-
ment model with an identity change (IC) loss [14], and the
disentanglement model with SCT loss. Following [6], [7],
the classification accuracies for the unseen test data set are
recorded.

C. Results

In order to observe the effectiveness of our proposed
method, Table I shows a performance comparison of the
disentanglement model with and without SCT loss using the
development and test data sets for the short, medium, and long
utterances, as well as for all of the utterances. Using SCT loss
improved the performance of the original model for utterances
of every duration type.

Fig. 3 shows t-SNE plots of the extracted embeddings from
the disentanglement model, the model with the IC loss, and
the one with the proposed SCT loss. For the t-SNE plots,
we used 60 random samples per class from the test set. It
can be qualitatively observed that incorporating the proposed
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SCT loss into the model visually provides more discriminative
embeddings than the baselines. Additionally, the inter-class
distances for the two baselines (Fig. 3(a) and (b)) are visibly
closer together compared to those in the model using SCT loss
(Fig. 3(c)).

Table II summarizes the state-of-the-art performances ob-
tained from the literature [7], [8]. The disentanglement model
with SCT loss outperformed all other state-of-the-art methods,
achiving 88.83% and 88.45% accuracy on the development and
test sets, respectively.

V. CONCLUSION

This paper presented a novel supervised clustering with
triplet (SCT) loss for a representation disentanglement model.
Specifically, we applied the proposed SCT loss for minimizing
intra-class variations and maximizing the inter-class varia-
tions in an Arabic dialect identification task. We qualitatively
showed that the SCT loss allows for the extraction of more
discriminative feature representations than baseline methods
using t-SNE embedding visualizations. Our proposed disen-
tanglement model outperformed the state-of-the-art methods
in terms of classification accuracies on the ADI-17 dataset.
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