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Abstract—We propose a multi time-frequency (t-f) resolution
CNN architecture for end-to-end speech recognition from raw
speech waveform. We address issues related to the nature of
front-end convolutional kernels and the kind of multi t-f spec-
trographic feature maps formed and the back-end convolutional
processing of the feature maps within two tasks, namely, frame-
wise phoneme classification and an encoder-decoder (with CTC-
Attention loss) based continuous phoneme decoding. Our multi
t-f resolution CNN (MT-CNN) architecture works with uncon-
strained learnt kernels and back-end 2D-convolutional layers
to process the multi t-f spectrographic feature maps for these
tasks. We contrast this architecture with two other variants in
recent work - a multi-scale feature based system and the SincNet
(which uses parameterized convolutional kernels constrained in
the form of Sinc functions with learnable bandwidths). We show a
consistent performance gain of the proposed multi t-f architecture
over these two variants - a 3-8% accuracy (absolute gain) in the
frame-wise classification task and 3% PER (absolute gain) in
the continuous phoneme decoding task. These two performance
gains together establish the effectiveness of the proposed archi-
tecture in using the multi t-f unconstrained variable length 1-D
convolutional kernels, 2-D multi t-f spectrographic feature maps
and the back-end 2-D convolution layers.

Index Terms—multi time-frequency resolution, CNN, end-to-
end, speech recognition

I. INTRODUCTION

We address the problem of fully end-to-end (E2E) automatic
speech recognition (ASR) using a multi time-frequency (t-
f) resolution CNN architecture, with emphasis on the ability
of this new architecture to perform enhanced representation
learning from 1-dimensional signals such as speech waveform.
This enhanced representation learning comes from the archi-
tecture’s ability to perform a multi time-frequency analysis
on the input waveform using variable-sized kernels in its
first convolution layer and thereby create 2-dimensional t-
f feature maps that correspond to multiple spectrographs,
each equivalent to a filter-bank analysis with variable kernel
(convolving filter) sizes.

Starting from the early introduction of the convolutional
neural-network (CNN) by Le Cun [1] for successful recogni-

tion of handwritten digit images, CNNs have come to be a well
established framework for end-to-end approaches (i.e. from
raw input), combining a powerful representational learning
mechanism [2] in its lower convolution layers and discrimina-
tive fully-connected higher layers for multi-class classification
tasks such as from raw images [3], speech spectrographic
images [4], speech-waveform [5], [6], audio-waveform [7], [8]
and music-waveform [9], [10].

In this paper, we focus on a specific aspect of CNNs,
namely, the kernel sizes used in the convolutional kernels, and
point out that for applying CNNs on raw 1-dimensional signals
such as speech-, audio- and music-waveforms, it becomes
important to ‘provide’ for a variable kernel size, to exploit and
resolve the well known time-frequency trade-off inherent in
such 1-dimensional convolution operation. While this applies
to 2-dimensional images also, this issue of having to address
the time-frequency trade-off in the application of a filter-bank
kind of operation (what a set of kernels in a CNN layer do) has
been more or less overlooked in the image-CNN community.
The closest treatment in the image-CNN literature to this
notion of using variable kernel sizes is in the now well known
Inception network (or the GoogleNet) [11], where multiple
image kernels of sizes 1 × 1, 3 × 3 and 5 × 5 have been
used in the early CNN layers. However, the motivation for
providing for these variable sized kernels has been more or less
very different from the fundamental time-frequency (spatial
intensity variation vs spatial frequency in the case of images)
trade-off, and as a consequence, the advent of Inception did
not really see the emergence of a strong line of enquiry into
such architectures with variable kernel sizes in the 1-d signal
community in order to address the time-frequency trade-off
using multi-temporal convolutional analysis.

II. RELATION TO PRIOR WORK

In processing 1-d speech/audio waveform for various tasks
such as audio scene classification, speaker-recognition, speech
recognition etc. the problem of time-frequency trade-off aris-
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ing in end-to-end frameworks using convolutional layers has
indeed received some attention in the recent years, and we
note all of such work in the following.

Earliest among such work is that of [12], [13] who address
this issue for the first time, and propose a multi-temporal
architecture for audio-scene classification (ASC), taking into
account the need for a variable time-frequency representational
analysis of the 1-d signal such as audio-signal for the ASC
task. We extended and generalized the multi-temporal architec-
ture of [12], [13] to a highly scaled number of multi-temporal
branches (e.g. 12) for the ASC task, allowing for creating
multiple spectrographic feature maps with a wide range of
time-frequency resolution trade-offs [14]. By this, we showed
a very significant performance gain (11-15% absolute) by the
multi t-f architecture (with 12 branches) over a conventional
single-branch CNN operating at any of the kernel sizes that is
part of the multi t-f architecture.

With regard to ASR, the only relevant work in this direction
is by Zhu et al. [15] which proposes a multi-scale feature
learning framework in an end-to-end architecture. This work
uses multiple (specifically 3) branches of convolutional layers
operating on a frame of input waveform samples to yield an
aggressively pooled feature vector per input frame and which
is further processed as a sequence of feature vectors by a
Bi-LSTM encoder and CTC decoder system for continuous
speech recognition. The crux of this work is in essentially
addressing the time-frequency tradeoff required to be handled
in efficient representation learning from raw speech wave-
form. However, we point that, importantly, by performing
an aggressive pooling on the feature map produced by the
1-d convolutional kernels, this work loses on the rich t-f
spectrographic information available (and much needed) to
represent the multi t-f resolution signal such as speech in the
input. We propose to address this specific deficiency of this
architecture and propose to use 2-D convolutional layers to
process the 2-D multi t-f spectrographic feature map stack to
exploit the t-f correlations and acoustic-phonetic information
inherent in such a multi t-f analysis of the input raw speech
waveform. By this, we show significant performance gain (e.g.
3% absolute in PER) over Zhu et al.’s [15] system.

Secondly, we note the other relevant work in this direction
for ASR comes from the E2E-SincNet [16] architecture which
exploits the recently proposed SincNet convolutional layer
based speech processing [17], [18] proposed originally for
speaker recognition, frame-wise phoneme recognition and with
DNN-HMM systems. While this framework does use variable
length kernels arising from the learnable band-widths of the
Sinc kernel’s rectangular frequency response, this framework
does not address the need for handling the time-frequency
tradeoff inherent in 1-d signal analysis by means of the con-
volutional network in learning short-time and running spectral
representations. In other words, this work uses a ‘single’
branch of Sinc-constrained kernels - which, while being capa-
ble of learning variable bandwidths and center frequencies and
thereby approximate a mel-scale filter-bank - is not adequate
to represent the time-frequency trade-offs that can be handled

only by a multi-branch convolutional system. We address this
and propose to have multiple branches of Sinc-constrained
kernels to provide for such a CNN architecture to learn
multi t-f resolution representation from all the branches in
addition to the individual branch’s variable kernel / bandwidth
representation by virtue of the rectangular band-pass filters of
the Sinc kernels.

The above two constitute the context of our present work
here, and we now set out to outline the overall framework to
position our present contribution with respect to the above two
recent work [15] and [16].

III. OVERALL FRAMEWORK

Fig. 1 provides the overview of the framework-pipeline
and architecture within which we propose our multi time-
frequency resolution CNN based ASR, particularly with re-
spect to the other two works referred above, namely, Zhu et al’s
[15] multi-scale feature based ASR and the E2E-SincNet [16].
These three approaches outlined in these 2 figures are termed
i) Proposed, ii) Zhu’s multi-scale feature and iii) SincNet for
further discussion. The 3 approaches are grouped into two
pipelines - shown in Panel A and Panel B - both with the
following broad components:

1) Input: Raw waveform (a single frame of 25 ms duration
or 400 samples for frame-wise phoneme classification)
or a sequence of such single frames for continuous
phoneme decoding.

2) Representation learning by 1-D Conv Branches: 1-D
conv layers convolving on the input raw waveform to
yield multiple t-f spectrographic feature maps.

3) Back-end: A back-end processing of the spectographic
feature maps in the form of 2-D conv layers (in the
case of the proposed system, following a flattening of
the reduced 2-D feature map) or aggressive pooling (in
the case of the Zhu’s multi-scale feature and SincNet)
to yield a flattened feature vector

4) Frame-wise phoneme classification: The feature vector
being fed to fully connected layers with soft-max and
cross-entropy loss training and corresponding maximum
a posterior classification in inference for a frame-wise
phoneme classification on which %Acc is measured.

5) Encoder-Decoder based continuous phoneme decod-
ing: The feature vector sequence (corresponding to a
sequence of input raw waveform frames) being fed
to an Encoder-Decoder architecture for a sequence-to-
sequence learning with joint CTC-Attention loss and
corresponding CTC decoding to yield a continuous
phoneme label sequence on which PER is measured.

The main differences between Panel A and Panel B are
in terms of the essential differences between the Proposed
approach and those of Zhu’s and SincNet as outlined below:

1) Nature of 1-D Conv Kernels: In the proposed ap-
proach in Panel A, the 3 1-D conv layers work on
the input speech waveform as parallel branches, termed
Br-1, Br-2 and Br-3, each with 32 kernels of duration
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Fig. 1. Multi time-frequency resolution CNN architecture - Overview of A) proposed and B) Zhu [15] and SincNet [16]

1ms, 5ms and 10ms respectively. This corresponds to a
‘unconstrained variable-length kernels’ scenario which
offers an unrestricted learning of the kernel weights
(i.e., filter impulse responses of the convolving filter
and corresponding band-pass characteristics of each such
kernel) for a given task. In Panel B, the 3 1-D conv layers
correspond to those of Zhu’s system (also ‘unconstrained
variable-length kernels’) and to those of SincNet where
the kernels are ‘fixed-length constrained kernels’ in the
sense of being constrained to be Sinc-functions - each
parameterized to different band-pass cut-off frequencies
of a rectangular band-pass filter - within a fixed duration
kernel size for a specific branch. Note that this is a
multi-branch generalization of the original E2E-SincNet
architecture [16] (which worked with only one branch).

2) Nature of back-end processing: Panel A shows the
proposed approach to use a 2-D Conv Layers to work
on the multi t-f spectrographic feature map ‘stack’
viewed as a composite image - which has a rich t-f
representation of the input signal in a complementary
manner across the 3 maps (narrowband to wideband) -
and from which it is important to extract further features
across t-f cells of the acoustic-phonetic manifestation
of different phone-classes for further classification (via
fully connected layers) / decoding (via an Encoder-
Decoder and CTC/Attention). Panel B, on the contrary,
shows this back-end to be an ‘Aggressive Pooling’ as
performed in these respective works (Zhu and E2E-
SincNet) which fails to retain or exploit the rich 2-D
t-f map ‘stack’ - but reduces it directly into a flattened
feature vector (of dim 480) - which is further fed to
a fully-connected layer or encoder-decoder for frame-
wise phoneme classification or continuous phoneme
decoding.

We argue that Panel A (the proposed pipeline) can offer
superior performance to the pipeline in Panel B (representing
the Zhu’s system or the E2E-SincNet) in differentiating itself
with respect to the above two central aspects of the multi

t-f resolution CNN representation learning, namely, i) the
front-end 1-D Conv ‘unconstrained variable-length kernels’
facilitating the very formation of the multi t-f spectrographic
feature map ‘stack’ by multiple branches and ii) the back-
end 2-D Conv layers to provide for back-end processing of
such a multi t-f ‘stack’ for more efficient 2-dimensional t-f
feature extraction for subsequent down-stream classification
and decoding.

IV. MULTI TIME-FREQUENCY RESOLUTION CNN
We now elaborate on the ‘1-D Conv’ block in Panel A of

Fig. 1 (marked ‘Details in Fig. 2’), as this forms the central
part of the multi t-f CNN architecture being proposed and
studied here. This ‘1-D Conv’ block is shown in Fig. 2 in an
expanded form highlighting the formation of the multi time-
frequency spectrographic feature maps.

The 1-D Conv layers corresponding to a multi-branch CNN
architecture is capable of processing the raw 1-d signal input
(speech waveform for ASR) to create multiple spectrographic
feature maps with a wide range of time-frequency resolution
trade-offs. It can be seen that the input raw signal (shown as
25 ms sec duration here, made of 400 samples corresponding
to a sampling rate of 16 kHz), is fed to 3 branches, each with
a set of 32 kernels, with each branch having a fixed kernel size
(e.g. branch 1 has kernel size of 1 ms or 16 samples, branch
2 has kernel size of 5 ms of 80 samples aand branch 3 has
kernel size of 10 ms or 160 samples).

To provide a reference, a conventional CNN has only
one branch (with multiple kernels, e.g. 32 here), with some
fixed kernel size, e.g. 5 ms (in the 2nd branch). In such a
conventional CNN branch, each kernel convolves with the 1-
d signal input and yields an output that is a linearly filtered
version of the signal through each of the 32 kernels in that
branch. As the CNN learns to map the input to the classes
in the fully connected layer in the output (for e.g. as in the
frame-wise phoneme classification pipeline in Panel A or B
in Fig. 1), the kernels (the filter coefficients) are optimized to
learn to extract an appropriate feature from the input signal,
and create a ‘feature map’ which is one spectrogram-like
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Fig. 2. Multi time-frequency resolution CNN conv layer - formation of multi time-frequency spectrographic feature maps

output made of 32 channels each with its time varying filter
outputs, which is further down sampled (e.g. by max pooling
or average pooling). This ‘single’ spectrogram is governed
by the time-frequency trade-off inherent and defined by the
kernel size (of the single branch, taken as 5 ms or 80 samples
in this discussion), i.e., the kernel as a filter defines an
impulse response of length 80. Its corresponding frequency
response has a typical band-pass characteristic with the band-
pass bandwidth determined by the kernel length (80 here); the
actual frequency response is itself determined by the kernel
values which in turn are determined by the CNN’s weight
learning for the given task, typically with different kernels
tuning-in to different parts of the spectral range.

The resultant spectrogram-like feature map can be viewed
as a narrow-band or wide-band spectrogram depending on the
kernel size, as is well known for instance in speech signal
processing [19], i.e., small kernels yield high temporal reso-
lution and poor frequency resolution resulting in a wide-band
spectrogram and long kernels yield poor temporal resolution
and very good frequency resolution resulting in a narrow-
band spectrogram. This can also be viewed as equivalent
to a filter-bank analysis of the input signal with the filter-
banks’ filter’s spectral characteristics (mainly the band-pass
bandwidths) determined by the kernel size. Thus a single
branch CNN performs the equivalent of a filter bank analysis,
with each filter in the filter bank having a fixed kernel size,
and possibly a fixed stride (corresponding to the hops of the
filters), followed by a down sampling of the filter-bank outputs
via max- or average-pooling in CNN terminology.

It is clear that such a ‘single’ branch and the corresponding
spectrogram with a time-frequency trade-off specific to the
kernel size of that branch is highly restricted in the kind
of time-frequency analysis it can perform on the input 1-d
signal. For instance, in a wide class of 1-d signal classification
problems such as speech recognition, audio-classification or
music-genre classification problems, the signal is highly non-
stationary with the spectral dynamics changing at varying
rates in time, and with various spectral events localized in
frequency likewise exhibiting different temporal evolution.
In order to capture these dynamic events in time and fre-
quency, localized at different scales in time and frequency,
a single spectrographic representation as obtained by a single

branch CNN is clearly inadequate. This calls for a mechanism
to generate time-frequency representations at different time-
frequency resolutions, that is made possible by considering
multiple branches in the CNN, each branch with a pre-
specified but variable kernel size which is same for all the
kernels in that branch.

Fig. 2 shows such a multi-branch CNN with 3 branches.
Shown are branches 1, 2 and 3 with the corresponding kernel
sizes 16 (1ms), 80 (5ms)and 160 (10ms). Such a multi-branch
CNN will generate a spectrographic feature-map in ‘each’
of the 3 branches, each such feature map having its unique
time-frequency trade-off determined by the kernel size used
in the corresponding branch. For example, here, Branch 1
with kernel size 16 samples (1ms), will yield a very wide-
band spectrogram (with a very fine time-resolution and poor
frequency resolution), Branch 2 with kernel size 80 samples
(5 ms) will yield a less wide-band spectrogram and Branch
3 with a kernel size 160 samples (10 ms) will yield a very
narrow-band spectrogram. The 3 branches taken together will
yield multi time-frequency resolution spectrographic feature
maps, each of size 32 frequency channels × number of filter
outputs decided by the stride of the convolution kernel in that
branch (e.g. 32× 400 for Branch 1 with stride of 1). Each of
these are subject to max-pooling to reduce them to a feature-
map of size 3 × 32 × 133 which is further processed (as in
Fig. 1) in the pipeline in Panel A by a ‘2-D Conv’ block for
efficient 2-D t-f representation learning and in Panel B by an
aggressive pooling to generate a multi-scale feature vector as
in Zhu’s and E2E-SincNet systems.

V. DATA CORPUS

Our experiments were evaluated on the TIMIT speech
corpus containing recordings (sampling rate = 16kHz) of
phonetically-balanced read English speech. We worked using
the standard train-dev-test split of the TIMIT database con-
sisting of 3,696 training utterances (excluding SA utterances)
from 462 speakers, 400 validation utterances by 50 speakers
and 192 utterances by 24 test speakers. The validation set is
used to determine the best performance model on which the
results on the test dataset are reported. Raw speech waveform
corresponding to each utterance is split into segments of 25ms
(400 samples) and given as input to the system.
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VI. EXPERIMENTS AND RESULTS

In this section, we present the frame-wise accuracy and
continuous phoneme decoding PER of our proposed multi
time-frequency resolution CNN based architecture and com-
pare the results with Zhu’s multi-scale feature [15] and the
E2E-SincNet [16] systems. For each variant, we compare the
performance of single branch fixed kernel size CNN with
multi-branch variable kernel-size CNN to understand and show
the advantage of the multi time-frequency systems.
Frame-wise phoneme classification results: The output from
the convolution layers is fed to 3-layer DNN containing 1024
hidden units followed by a softmax layer. Table I outlines
the framewise accuracy of the three architectures considered
here. We see that our proposed multi time-frequency resolu-
tion CNN architecture gives the best frame-wise accuracy of
63.03% which i) is up to 7% (absolute) superior to a single-
branch system and ii) which offers an improvement of 3%
(absolute) over Zhu’s multi-scale feature based ASR and a
8% (absolute) over SincNet.

TABLE I
FRAME-WISE PHONEME CLASSIFICATION RESULTS ON TIMIT DATASET
OBTAINED WITH THE PROPOSED (MULTI T-F RESOLUTION CNN), ZHU’S

MULTI-SCALE FEATURE AND THE SINCNET SYSTEMS

Kernel size Frame-wise accuracy
1 ms 5 ms 10 ms Proposed Zhu SincNet

96 0 0 56.3 60.3 56.5
0 96 0 56.8 60.7 54.1
0 0 96 59.6 60.5 51.8
32 32 32 63.03 60.8 55.5

E2E systems for continuous phoneme decoding: All the
three architectural variants take in raw-audio blocks of 25ms
(400 samples) directly as input and use an encoder-decoder ar-
chitecture which is trained on joint CTC-attention loss function
with the tunable hyper-parameter (weighing the two losses),
λ = 0.5. The output from the convolution layers are fed
to Bi-LSTM encoder with 4 layers consisting of 512 hidden
units. The decoder used in the attention network is a one-layer
LSTM of size 512 units. Table II reports the PER obtained by
the three architectural variations discussed in our work. We
observe that our proposed E2E multi time-frequency system
gives the best PER of 20.4% and is superior to a single branch
CNN architecture by as much as 2% (absolute) PER and
the other two (Zhu and E2E SincNet) multi-branch systems.
Our proposed system gives a 3% (absolute) performance gain
compared to the other 2 variants.

TABLE II
PER FOR PROPOSED (MULTI T-F RESOLUTION CNN), ZHU’S

MULTI-SCALE FEATURE AND THE E2E-SINCNET SYSTEMS

Kernel size PER
1 ms 5 ms 10 ms Proposed Zhu E2E-SincNet

96 0 0 22 23.3 22.9
0 96 0 21.1 24.2 22.4
0 0 96 22.4 25.9 23.3

32 32 32 20.4 23.7 24.1

VII. CONCLUSIONS

We have proposed a multi time-frequency (t-f) resolution
CNN architecture for E2E speech recognition from raw speech

waveform - which works with unconstrained variable-length
kernels and a back-end 2D-convolutional layers to process the
t-f spectrographic feature maps. We have shown a performance
gain of 3-8% accuracy (absolute gain) in the frame-wise clas-
sification task and 3% PER (absolute gain) in the continuous
phoneme decoding task of the proposed multi t-f resolution
architecture with a 2-D CNN back-end over two recent variants
- a multi-scale feature based system and the E2E-SincNet.
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