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Abstract—In this paper, we conduct one of the very first studies
for cross-corpora performance evaluation in the spoken language
identification (LID) problem. Cross-corpora evaluation was not
explored much in LID research, especially for the Indian lan-
guages. We have selected three Indian spoken language corpora:
IIITH-ILSC, LDC South Asian, and IITKGP-MLILSC. For each
of the corpus, LID systems are trained on the state-of-the-
art time-delay neural network (TDNN) based architecture with
MFCC features. We observe that the LID performance degrades
drastically for cross-corpora evaluation. For example, the system
trained on the IIITH-ILSC corpus shows an average EER of
11.80 % and 43.34 % when evaluated with the same corpora and
LDC South Asian corpora, respectively. Our preliminary analysis
shows the significant differences among these corpora in terms of
mismatch in the long-term average spectrum (LTAS) and signal-
to-noise ratio (SNR). Subsequently, we apply different feature
level compensation methods to reduce the cross-corpora acoustic
mismatch. Our results indicate that these feature normalization
schemes can help to achieve promising LID performance on cross-
corpora experiments.

Index Terms—Cross-corpora, language recognition, channel
compensation, long-term average spectrum, TDNN.

I. INTRODUCTION

Voice assistants and smart devices are becoming a part of

our daily life. Various speech processing applications, such as

speech recognition, speech translation, speech synthesis, and

speaker recognition, are very important component of these

devices [1]. These speech-based applications should have a

front-end language identification (LID) module to operate on

multiple spoken languages efficiently. This module can predict

the spoken language from the speech input and accordingly

adapt the mode of operation.

In the last few decades, numerous significant attempts have

been made to develop efficient LID systems. Different acous-

tic, prosodic [2], ASR bottleneck features [3], [4] have been

utilized along with several kinds of state-of-the-art classifiers,

such as GMM, i-vector backends [5], and deep neural network

based models [6]–[8]. These systems are studied mostly using

a single corpus. The test data for evaluating these systems

comes from the non-overlapping subsets of the same corpora

used for system training. This type of evaluation does not

consider the cross-corpora variations, indicating a lack of

generalization study for deploying in real-world applications.

To the best of our knowledge, cross-corpora study has not been

conducted explicitly for spoken language recognition.

Fig. 1. Sources of potential corpora-dependent information in LID process.

Although the cross-corpora study has not been explored

explicitly in LID, researchers conducted cross-corpora study

in some other speech processing applications, such as anti-

spoofing [9] and speech emotion recognition [10]. These works

have found that the recognition performance degrades signif-

icantly when evaluated with audio-data from other corpora.

The main reason for this is the corpora-dependent bias due

to differences in data collection methods. Achieving good

cross-corpora performance has remained a challenging task.

In Fig. 1, we have shown several factors which can vary

considerably across different corpora, collected in different

settings for LID task.

In this work, we have conducted one of the very first cross-

corpora performance analyses for spoken language recogni-

tion with three standard speech corpora in Indian languages.

India is a culturally and linguistically diverse country with

1.4 billion population and 22 official languages 1. For verbal

interaction with the smart devices, the major portion of the

Indian population is more comfortable with their respective

native languages rather than English or other global languages.

Due to the mutual influence and similarity among the Indian

languages [11], developing Indian LID systems has its unique

challenges [12]. Considering these facts, researchers have

given special attention to build efficient LID systems [13]–

[17] for the Indian languages. However, these systems were

developed mostly using a single corpus.

1https://censusindia.gov.in/2011-common
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TABLE I
DESCRIPTION OF THE THREE CORPORA USED IN THIS STUDY.

Corpora IIITH LDC KGP

Total languages 23 5 27

Mode of speech BN and CTS CTS BN

Environment Studio, real-world Real-world Studio

Total speakers 1150 584 300

Duration 103.5 hours 118.3 hours 27 hours

Audio format 16 kHz (.wav) 8 kHz (.flac) 8 kHz (.wav)

We have trained three independent LID systems with the

three used corpora’s training data and evaluated each system

with test data from all three corpora. We have shown that the

cross-corpora performances are severely inferior as compared

to the same-corpora performance. Further, we have analyzed

various factors due to which non-lingual biases can be present

in the individual corpus. Finally, we use various feature-level

compensation methods to reduce the corpora mismatch, which

substantially improves cross-corpora generalization.

II. CORPORA DESCRIPTION

We have used three standard datasets for the cross-corpora

evaluation, which are widely used in the Indian LID re-

search. These are IIITH-ILSC (IIITH) [18], LDC South Asian

(LDC) [19], and IITKGP-MLILSC (KGP) [12]. The compara-

tive description of the three corpora is given in Table I. For our

experiments, we have chosen five languages that are common

to all the corpora. These are: Bengali, Hindi, Punjabi, Tamil,

and Urdu. All the speech segments are converted into 8 kHz

sampling rate, and silence regions are removed before further

processing. The IIITH and KGP corpora are already divided

into training and testing parts. We have manually split the data

into training and testing parts with 80 : 20 ratio for LDC. For

all the corpora, the speakers in training and testing data are

disjoint. From the available metadata, we can summarize the

major differences across the used corpora as follows:

• LDC corpus contains conversational telephone speech

(CTS), KGP corpus contains mainly broadcast news (BN)

data, and IIITH corpus contains both.

• In IIITH and KGP, languages are spoken in the standard

form. Whereas in LDC, the speakers use local dialects

and accents during conversation.

• The room environment is recording studio for KGP data.

Whereas, for LDC data, no clear conclusion can be made.

IIITH contains recording studio, office room, and outdoor

environments.

• Variations in background noise levels are much more in

IIITH data, moderate in KGP data, and less in LDC.

III. ANALYSIS OF THE SPEECH CORPORA

To investigate the differences among the speech corpora,

we have analyzed the three corpora by comparing the long-

term average spectrum (LTAS) and the signal-to-noise ratio

(SNR) histogram. We have chosen these two attributes as they

represent fundamental characteristics of audio-data.

A. SNR histogram

The SNR histogram helps to analyze the level of background

noise present across the speech segments in a speech corpora.

We use the NIST STNR tool to calculate the overall signal-

to-noise ratio corresponding to each of the speech segments2.
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Fig. 2. Comparison of SNR histograms for the segments in each corpora.

In Fig. 2, histograms of the signal-to-noise ratio values

for each of the corpora are shown. Majority of the segments

from IIITH corpus have SNR values less than 10 dB, with

some segments having SNR values around 20 dB. In contrast,

most LDC speech segments have SNR higher than 50 dB,

with few low SNR segments. These facts can be justified by

the bi-modal nature of the histograms for IIITH and LDC

corpora. The histogram for KGP corpus is spread across a

wide range of SNR values, indicating more variations in the

level of background noise.

B. LTAS analysis

We have compared the corpora in terms of overall spectral

information using long-term average spectrum (LTAS) anal-

ysis. After silence removal, for each segment, the short-time

Fourier transform (STFT), S(f, t) ∈ R
(F×T ) is computed.

Here, F denotes the number of frequency bins, and T denotes

the time frames. Then, power spectrum P (f, t) is calculated

from the STFT output. The LTAS spectrum for a segment

(Ls(f)) is calculated by taking the log of the power spectrum:

Ls(f) =
1

T

T
∑

t=1

log |S(f, t)|2 (1)

Then, overall LTAS for a corpus is computed by taking the

average across all its segments. In Fig. 3, the LTAS plots

are shown for the training and testing parts of the three

corpora. We conclude that the spectral information among

the corpora differs significantly at specific frequency ranges,

mostly below 100 Hz and above 1 kHz. These ranges of

frequency components mainly contribute to the non-speech

factors [20], such as channels, background noise, etc.

IV. METHODS FOR MISMATCH REDUCTION

The analysis conducted in Sec. III shows that the mismatch

among the corpora is mainly due to varying channel effects

and background noise. This section discusses several feature

2https://www.nist.gov/itl/iad/mig/tools
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Fig. 3. Comparison of overall LTAS of the corpora.

compensation schemes to reduce the impact of those variations

and apply the same in this work. Among several compensation

techniques, we have applied some of the most commonly used

ones in the literature, such as CMVN, feature warping, RASTA

filtering, along with the relatively newer PCEN approach.

Our objective is to prove the effectiveness of these popular

techniques for achieving better cross-corpora generalization.

A. Cepstral mean and variance normalization (CMVN)

CMVN assumes that the channel to be static throughout

the entire utterance. Thereby, it provides channel-compensated

features by making mean zero with mean subtraction followed

by variance unity with scaling by the inverted standard devi-

ation. If only mean is subtracted, then this method is called

cepstral mean subtraction (CMS). CMVN is expressed as,

X̂ =
X− µ

σ
(2)

where, X ∈ R
Nd×T is the feature matrix for an utterance with

Nd dimensions and T frames. µ, σ ∈ R
Nd×1 are the mean and

standard deviation respectively across the dimensions. We have

also applied windowed CMVN (W-CMVN), where CMVN is

applied over windows of three seconds in the utterance. In W-

CMVN, the channel is assumed to remain static for a smaller

duration, which is a realistic assumption.

B. Feature warping (FW)

Feature warping (FW) warps the short-term distribution of

the cepstral features to a standardized distribution [21]. FW

increases feature robustness against slowly varying additive

noise and various channel and transducer mismatches.

C. Relative spectral (RASTA) processing

RASTA [22] acts as a bandpass filter and removes the static

and slowly varying channel effects present in the speech signal.

In the high-frequency regions, this bandpass filter also reduces

the effect of convolutional noise. Hence, RASTA improves the

robustness against environmental variations present in the data.

The filter transfer function [22] is expressed as,

H(z) = 0.1 ∗ z4 ∗
2 + z−1 − z−3 − 2z−4

1− 0.98z−1
(3)

D. Per-channel energy normalization (PCEN)

We have applied PCEN [23] on the mel-spectrograms

(E(t, f)). During mel-spectral processing, PCEN replaces

the logarithmic compression with the following stages [24]:

temporal integration (4), adaptive gain control (AGC) (5), and

finally dynamic range compression (DRC) (6),

M(t, f) = (E∗φT )(t, f) = sE(t, f)+(1−s)M(t−τ, f) (4)

G(t, f) =
E(t, f)

(M(t, f) + ǫ)α
(5)

PCEN(t, f) = (G(t, f) + ∆)r −∆r (6)

Where, φT (t) is a first-order IIR filter with 0 < s < 1 and τ as

hop size, 0 < α < 1, ∆ > 1, and r > 0. PCEN increases the

robustness against stationary background noise as well against

foreground loudness variations [24].

V. EXPERIMENTAL SETUP

A. Language recognition system

We have computed 20-dimensional mel-frequency cep-

stral coefficients (MFCCs) features from the silence removed

speech using 20 ms frame-size and 10 ms overlap. For

classification, we have implemented time-delay neural network

(TDNN) based architecture as described in [7] using the

PyTorch library [25]. This architecture has five convolutional

layers, followed by statistical pooling and three fully con-

nected layers. We have used categorical cross-entropy as the

loss function and AdamW [26] as the optimizer with a learning

rate of 0.001. The systems are trained for 30 epochs with

validation loss based early stopping criteria and patience of 3

epochs. We follow an end-to-end approach for classification.

It gives better validation performance as compared to the

backend-based approaches [27]. Using the training data of

each of the three corpora, we have trained three independent

LID models. Then, each model is evaluated with the test data

from all three corpora. If the corpora for training and test are

the same, we call this as within-corpora evaluation condition.

In contrast, cross-corpora evaluation considers the test data

from different corpora than training.

B. Performance evaluation metrics

We have evaluated the LID performance in terms of two

standard metrics: equal error rate (EER) [28] and cost average

(Cavg ). Using detection error trade-off (DET) plot, the false

acceptance and false rejection rates are varied by changing the

threshold, and EER is found at the value for which they are

equal. In NIST language recognition evaluation (LRE) [29]

and OLR challenge [30], Cavg was used as the primary

evaluation metric. It is defined as follows [29]:

Cavg =
1

N

∑

Lt

{

PTarget · PMiss(Lt)
+
∑

Ln

PNon−Target · PFA(Lt, Ln)

}

(7)

where, Lt and Ln are the target and non-target languages.

PMiss, PFA are the probability of missing and false alarm.

PTarget = 0.5 is the prior-probability of the target languages.
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TABLE II
BASELINE RESULTS IN TERMS OF EER IN % / Cavg × 100 FOR CROSS-CORPORA LANGUAGE RECOGNITION.

Training: IIITH Training: LDC Training: KGP

IIITH-test LDC-test KGP-test IIITH-test LDC-test KGP-test IIITH-test LDC-test KGP-test

Duration EER / Cavg EER / Cavg EER / Cavg EER / Cavg EER / Cavg EER / Cavg EER / Cavg EER / Cavg EER / Cavg

3 sec 12.69 / 14.51 43.39 / 46.23 46.26 / 43.18 44.65 / 46.66 28.59 / 29.31 46.58 / 48.00 59.80 / 50.00 52.13 / 46.05 12.33 / 12.39

6 sec 11.65 / 13.30 43.39 / 46.00 45.17 / 42.88 44.75 / 46.36 26.73 / 28.30 45.92 / 44.40 58.56 / 50.00 53.01 / 45.69 11.22 / 10.28

9 sec 11.07 / 13.19 43.24 / 45.89 45.00 / 42.57 45.09 / 45.84 26.27 / 27.98 45.88 / 46.50 59.53 / 50.00 58.19 / 45.68 10.00 / 9.63

TABLE III
RESULTS IN TERMS OF EER IN % / Cavg × 100 FOR DIFFERENT FEATURE COMPENSATION METHODS. M0 INDICATES CMS, M1 INDICATES CMVN, M2

INDICATES W-CMVN, M3 INDICATES FW, M4 INDICATES RASTA AND M5, INDICATES PCEN.

Training: IIITH Training: LDC Training: KGP

IIITH-test LDC-test KGP-test IIITH-test LDC-test KGP-test IIITH-test LDC-test KGP-test

Test duration: 3 sec

M0 12.40 / 13.82 43.10 / 46.23 30.30 / 29.91 50.08 / 47.34 22.95 / 26.40 45.60 / 45.92 37.55 / 34.91 51.80 / 46.72 11.18 / 10.82

M1 11.49 / 12.91 43.11 / 46.83 35.99 / 35.82 43.75 / 42.37 23.41 / 27.81 41.45 / 39.81 35.78 / 35.79 51.32 / 48.72 14.64 / 15.75

M2 12.40 / 14.42 45.12 / 46.98 37.06 / 35.99 39.75 / 39.81 23.68 / 27.75 41.45 / 42.41 42.49 / 43.69 51.95 / 49.36 14.06 / 15.10

M3 11.05 / 12.21 43.81 / 46.37 38.83 / 38.08 38.40 / 38.39 23.47 / 27.96 43.54 / 43.22 45.47 / 43.06 51.44 / 50.00 14.04 / 13.76

M4 9.77 / 11.42 45.23 / 45.17 33.09 / 33.06 47.35 / 45.36 23.40 / 28.63 41.23 / 42.31 36.84 / 35.77 48.48 / 44.55 10.47 / 10.32

M5 14.13 / 15.77 48.83 / 45.39 41.14 / 40.35 34.59 / 38.46 26.04 / 29.68 38.86 / 40.10 38.41 / 39.78 51.71 / 47.70 15.00 / 14.24

Test duration: 6 sec

M0 11.18 / 12.52 42.12 / 45.64 29.95 / 28.35 49.18 / 46.25 20.91 / 24.37 43.88 / 44.10 36.17 / 34.50 50.65 / 46.44 9.18 / 8.50

M1 10.41 / 11.56 41.88 / 46.11 33.98 / 34.81 42.92 / 41.63 21.28 / 25.11 40.88 / 38.24 34.58 / 34.59 51.14 / 47.94 11.67 / 11.22

M2 11.25 / 12.67 44.68 / 46.30 33.18 / 33.14 39.53 / 39.42 21.42 / 25.07 42.86 / 42.02 40.98 / 42.39 51.76 / 48.82 12.25 / 11.86

M3 9.74 / 10.87 42.73 / 45.58 37.54 / 36.99 37.65 / 37.68 21.13 / 25.42 43.88 / 41.83 44.32 / 42.41 51.22 / 49.03 12.25 / 11.71

M4 9.05 / 11.42 44.76 / 43.80 31.80 / 33.11 45.46 / 44.44 21.29 / 25.47 37.76 / 38.75 35.58 / 34.46 48.42 / 44.12 9.18 / 8.40

M5 12.38 / 13.38 43.95 / 44.45 37.24 / 39.05 33.41 / 36.59 23.61 / 25.91 36.41 / 36.67 37.84 / 38.99 52.01 / 47.45 13.59 / 12.41

Test duration: 9 sec

M0 10.68 / 12.25 42.08 / 45.28 32.00 / 27.63 50.77 / 46.88 20.02 / 23.36 44.00 / 43.25 37.07 / 34.17 49.91 / 46.23 8.13 / 8.63

M1 9.73 / 11.28 41.78 / 43.97 36.75 / 33.63 44.49 / 41.08 19.68 / 24.32 41.00 / 37.75 35.28 / 33.74 51.09 / 46.70 12.00 / 11.38

M2 10.92 / 12.75 44.34 / 46.07 37.00 / 33.88 40.94 / 38.96 20.10 / 24.12 44.00 / 42.00 41.83 / 42.17 51.83 / 47.97 12.87 / 12.00

M3 9.41 / 10.78 42.55 / 45.26 39.88 / 36.75 39.11 / 37.58 19.73 / 24.09 44.00 / 41.75 44.68 / 42.07 51.55 / 48.27 12.00 / 11.38

M4 8.70 / 10.21 44.01 / 42.93 34.00 / 32.50 46.44 / 44.14 20.18 / 24.24 39.00 / 38.88 36.13 / 34.06 48.29 / 44.11 8.00 / 7.88

M5 12.23 / 13.22 43.39 / 44.21 41.00 / 39.75 33.56 / 36.61 21.97 / 24.45 39.00 / 37.75 37.82 / 39.05 51.66 / 47.24 11.00 / 11.00

PNon−Target = (1 − PTarget)/(N − 1), where, N is the

total number of languages. The lower value of EER and Cavg

indicates better classification performance.

VI. RESULTS

A. Cross-corpora evaluation: baseline experiment

The evaluation results of our baseline experiment are shown

in Table II. The results show that the average EER across

within-corpora utterances is 11.80%, 27.20%, and 11.18%
for the systems trained with IIITH, LDC, and KGP corpus,

respectively. The relatively higher within-corpora EER for

LDC corpus indicates that this corpus contains significant

non-lingual variations and is difficult to learn. Cross-corpora

evaluations are severely inferior as compared to within-corpora

evaluations. The reason for this is the mismatches among the

corpora, aroused due to variations in channel and background

noise levels, as discussed in Section III. This performance gap

shows that LID systems trained on a single corpus can have

poor generalization if deployed in real-world scenarios where

the environmental variations are even more diverse.

B. Effect of feature post-processing

In Table III, we have shown the cross-corpora evaluation for

the modified features. The results show that the cross-corpora

performances are substantially improved as compared to the

baseline performances due to the reduction in mismatch. The

within-corpora performances are also improved considerably.

For IIITH and KGP trained systems, RASTA processing, and

for LDC trained system, PCEN achieve the best cross-corpora

improvement. Generally, language recognition performance

improves if the test utterance duration is increased [31], [32].

However, for our experiments, this improvement is not very

prominent. The TDNN systems are trained with chunks of 3s,

and the models are prone to be biased for this 3s duration

[33]. In Fig. 4, the performance comparison of the different

compensation techniques for the IIITH-trained system and

6s test utterances are shown, using DET plot. The cross-

corpora performance gap reduces more effectively between

the IIITH and KGP corpus as compared to the LDC corpus.

This is because the mismatch is higher between LDC and the

other two corpora, which is also justified from Fig. 3. Cross-

corpora performance is considerably poor when the KGP-

trained systems are evaluated with LDC test set. In these cases,

even after the compensation, cross-corpora evaluations show

EER more than 50%, which is an interesting fact for further

investigation. This indicates that the classifier captures the non-

lingual similarities, which affect the similarity score between

the target language and test audio [34].
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Fig. 4. DETs for the compensation techniques when IIITH corpus is used in
training and KGP corpus is used for cross-corpora evaluation.

VII. CONCLUSIONS

We have studied the cross-corpora performance for spoken

language recognition with three corpora. We train three inde-

pendent LID systems with audio-data from each corpus using

a TDNN-based language recognition system. During the eval-

uation, test data is used from all three corpora. In the baseline

experiment, we have shown that the cross-corpora performance

is almost around the chance level. We have analyzed that the

environmental mismatch is one of the major causes for this.

Based on the analysis, we have shown that with the feature

level compensation techniques, the corpora mismatch reduces,

which leads to a significant improvement in the cross-corpora

performance. Among the techniques, CMS and RASTA are

found to be more effective for improving generalization. The

used compensation techniques can be further improved by

tuning several important parameters in a learnable approach.

Apart from processing at the feature level, we will also explore

the effectiveness of signal level processing. We would also like

to solve this cross-corpora problem from domain adaptation

perspective in future study.
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