
WaveTransformer: An Architecture for Audio
Captioning Based on Learning Temporal and

Time-Frequency Information
An Tran

Audio Research Group
Tampere University
Tampere, Finland

an.tran@tuni.fi

Konstantinos Drossos
Audio Research Group

Tampere University
Tampere, Finland

konstantinos.drossos@tuni.fi

Tuomas Virtanen
Audio Research Group

Tampere University
Tampere, Finland

tuomas.virtanen@tuni.fi

Abstract—Automated audio captioning (AAC) is a novel task,
where a method takes as an input an audio sample and outputs
a textual description (i.e. a caption) of its contents. Most
AAC methods are adapted from image captioning or machine
translation fields. In this work, we present a novel AAC method,
explicitly focused on the exploitation of the temporal and time-
frequency patterns in audio. We employ three learnable processes
for audio encoding, two for extracting the temporal and time-
frequency information, and one to merge the output of the
previous two processes. To generate the caption, we employ the
widely used Transformer decoder. We assess our method utilizing
the freely available splits of the Clotho dataset. Our results
increase previously reported highest SPIDEr to 17.3, from 16.2
(higher is better).

Index Terms—automated audio captioning, wavetransformer,
wavenet, transformer

I. INTRODUCTION

Automated audio captioning (AAC) is an intermodal trans-
lation task, where the system receives as an input an audio
signal and outputs a textual description of the contents of the
audio signal (i.e. outputs a caption) [1]. AAC is not speech-to-
text, as the caption does not transcribe speech. In a nutshell,
an AAC method learns to identify the high-level, humanly
recognized information in the input audio, and expresses this
information with text. Such information can include complex
spatiotemporal relationships of sources and entities, textures
and sizes, and abstract and high-level concepts (e.g. “several
barnyard animals mooing in a barn while it rains outside”).

There are different published approaches for AAC. Re-
garding input audio encoding, some approaches use recurrent
neural networks (RNNs) [2], [3], [4], others 2D convolutional
neural networks (CNNs) [5], [6], and some others the Trans-
former model [7], [8]. Though, RNNs are known to have
difficulties on learning temporal information [9], 2D CNNs
model time-frequency but not temporal patterns [10], and
the Transformer was not originally designed for sequences
of thousands time-steps [7]. For generating the captions, the
Transformer decoder [6], [11], [8] or RNNs [1], [3], [5]
are mostly employed, and the alignment of input audio and
output captions is typically implemented with an attention

mechanism [12], [11]. Also, some approaches adopt a multi-
task approach, where the AAC method is regularized by the
prediction of keywords, based on the input audio [6], [11],
[13].

In this paper we present a novel AAC approach, based on a
learnable representation of audio that is focused on encoding
the information needed for AAC. We adopt existing machine
listening approaches where sound sources and actions are
well captured by time-frequency information [10], [14], and
additionally exploit temporal information in audio using 1D
dilated convolutions that operate on the time dimension [15],
[16], for learning of high-level information (e.g. background
vs foreground, spatiotemporal relationships). Additionally, we
claim that these two types of information can be combined,
providing a well-performing learned audio representation for
AAC. To this end, we present an approach which is explicitly
focusing on the above aspects. We employ three different
encoding processes for the input audio, one regarding tem-
poral information, a second that considers the time-frequency
information, and a third that merges the previous two and its
output is given as an input to a decoder which generates the
output caption.

The contribution of our work is: i) we present the first
method that explicitly focuses on exploiting temporal and local
time-frequency information for AAC, ii) we provide highest
reported results using only the freely available splits of Clotho
dataset and without any data augmentation and/or multi-task
learning, and iii) we show the impact on the performance
of the different components of our method, i.e. the temporal
and local time-frequency information, merging the previous
two, or all of them. The rest of the paper is as follows. In
Section II we present our method. Section III presents the
evaluation process of our method, and the obtained results are
in Section IV. Section V concludes the paper and proposes
future research directions.

II. PROPOSED METHOD

Our method takes as an input a sequence of Ta vectors with
F audio features, X ∈ RTa×F , and outputs a sequence of Tw

576ISBN: 978-9-0827-9706-0 EUSIPCO 2021



vectors having W one-hot encoded words, Y. To do so, our
method utilizes an encoder-decoder scheme, where the encoder
is based on CNNs and the decoder is based on feed-forward
neural networks (FFNs) and multi-head attention. Our encoder
takes X as an input, exploits temporal and time-frequency
structures in X, and outputs the learned audio representation
Z ∈ RTa×F ′

, which is a sequence of Ta vectors of F ′ learned
audio features. The decoder takes as an input Z and outputs
Y. Figure 1 illustrates our proposed method.

A. Encoder

Our encoder, E(·), consists of three learnable processes,
Etemp(·), Etf(·), and Emerge(·). Etemp learns temporal context
and frame-level information in X [16], and is inspired by
WaveNet [15] but with non-causal convolutions, since in AAC
there is no restriction for causality in the encoding of input
audio. Etf learns time-frequency patterns in X, and is inspired
by SOTA methods for sound event detection [10], [14], and
Emerge merges the information extracted by Etemp and Etf.
Nt blocks of CNNs (called wave-blocks henceforth) in

Etemp, sequentially process X. Each wave-block consists of
seven 1D CNNs, CNNnt

t1 to CNNnt
t7 , with nt to be the index

of the wave-block. For example, CNN2
t3 is the third CNN of

the second wave-block. The kernel size, stride, and dilation
of CNNnt

{t1,t4,t7} are one and its padding zero. The kernel size
of CNNnt

{t2,t3} is three and its padding, dilation, and stride is
one. The kernel size of CNNnt

{t5,t6} is three, its padding and
dilation are two, and stride is one. CNNnt

t1 has Cnt
in and Cnt

out
input and output channels, respectively, and the rest have Cnt

out
input and output channels.

The above hyper-parameters are based on the WaveNet
architecture [15]. The output of the nt-th wave-block, Hnt

t ,
is obtained by

H′′nt
t1 =CNNnt

t1 (H
nt−1
t ), (1)

S′′nt
t =tanh(CNNnt

t2 (H
′′nt
t1 ))� σ(CNNnt

t3 (H
′′nt
t1 )), (2)

H′nt
t =CNNnt

t4 (S
′′nt
t ) +H′′nt

t1 , (3)
S′nt

t =tanh(CNNnt
t5 (H

′nt
t ))� σ(CNNnt

t6 (H
′nt
t )), and (4)

Hnt
t =ReLU(BNnt

t (CNNnt
t7 (S

′nt
t ) +H′nt

t1 )), (5)

where BNnt
t is the batch normalization process at the nt-

th wave-block, ReLU is the rectified linear unit, σ(·) is the
sigmoid non-linearity, � is the Hadamard product, H0

t = Xt,
and HNt

t ∈ RC
nt
out×Ta
≥0 . The output of Etemp, Zt = Etemp(Xt),

is obtained by reshaping HNt
t to {1× Ta × Cnt}. All CNNnt

operate along the time dimension of Xt, allowing HNt
t to learn

temporal information from Xt [15] and be used effectively
in WaveTransformer for learning information that requires
temporal context, e.g. spectro-temporal relationships. The time
receptive field of each wave-block spans seven time-steps of
its corresponding input, leading to a receptive field of 7Nt−1
time-steps of X, for the output of the Nt-th wave-block.
Etf employs Ntf blocks of 2D CNNs, called 2DCNN-

blocks henceforth. Each 2DCNN-block consists of a 2D CNN

Fig. 1. The WaveTransformer, with the encoder on the left-hand side and the
decoder on the right-hand side

(S-CNNntf ), a leaky ReLU (LU), and a 2D CNN (P-CNNntf
tf ).

Each 2DCNN-block is followed by a ReLU, a BN (BNntf )
process, a max-pooling (MPntf ) process that operates only on
the feature dimension (hyper-parameters according to [10]),
and a dropout (DR) with probability of pntf . The 2DCNN-
blocks are inspired by AAC and sound event detection and
classification methods, and the recent, successful adoption of
depth-wise separable convolutions [13], [10]. The 2DCNN-
blocks learn spatial time-frequency information from their
input [10], allowing HNd

d to be used effectively for the
identification of sources and actions [10].

S-CNNntf consists of Cntf
in different (5, 5) kernels with

unit stride, and padding of 2, focusing on learning time-
frequency patterns from each channel of its input. Each kernel
of S-CNNntf is applied to only one channel of the input to
S-CNNntf , according to the depthwise separable convolution
model and to enforce the learning of spatial time-frequency
patterns [10]. P-CNNntf

tf consists of a square kernel of size
KP-CNN > 1, with unit stride, and padding of 2, focus-
ing on learning cross-channel information from the output
of S-CNNntf , since the kernels of P-CNNntf

tf operate on all
channels of the input to P-CNNntf

tf .
While hyper-parameters of S-CNNntf and S-CNNntf are

based on [10], the usage of KP-CNN > 1 is not according to a
typical point-wise convolution (i.e. with a (1, 1) kernel, unit
stride, and zero padding), as it was experimentally found that
it performs better, using the training and validation data, and
the protocol described in Section 3. S-CNN1 has Cntf

in = 1
and Cntf

out = Cnt
out input and output channels, respectively.

S-CNNntf>1 and P-CNNntf have input and output channels
equal to Cnt

out. The output of the ntf-th 2DCNN-block, Hntf
tf ∈

RC
ntf
out ×Ta×F ′

tf
≥0 , is obtained by

S′ntf
tf =P-CNNntf(BNntf(LU(S-CNNntf(Hntf−1

tf )))) and (6)
Hntf

tf =DR(MPntf(BNntf(S′ntf
tf ))), (7)

where H0
tf = Xtf and HNtf

tf ∈ RC
Ntf
out ×Ta×1
≥0 . Then, Ztf =

577



Etf(Xtf) is obtained by reshaping HNtf
tf to {1× Ta × CNtf

out }.
Emerge consists of a 2D CNN, CNNm and a feed-forward

neural network (FNN), FNNm, with shared weights through
time. Specifically, CNNm has a (5, 5) kernel with unit stride
and dilation, padding of 2, and two input and one output
channels. Both Zt and Ztf have the same dimensionality, are
concatenated in their channel dimension, and given as an input
to CNNm, as Z′′ = [Zt;Ztf] and Z′ = CNNm(Z

′′), where

Z′′ ∈ R2×Ta×C
Ntf
out

≥0 , and Z′ ∈ R1×Ta×C
Ntf
out is the output of

CNNm. Z′ is then reshaped to {Ta × CNtf
out } and given as an

input to FNNm, as Z = FNNm(Z
′), where Z ∈ RTa×F ′

, with
F ′ = CNtf

out .

B. Decoder
We employ the decoder of the Transformer model [7] as our

decoder, D(·). During training D takes as an input Y and Z,
and outputs a sequence of Tw vectors having a probability
distribution over W words, Ŷ ∈ [0, 1]Tw×W . We follow
the implementation in [7], employing an FFN as embedding
extractor for one-hot encoded words, FNNemb(·), a positional
encoding process, Penc(·), Ndec decoder blocks, Dndec(·), and
an FFN at the end which acts as a classifier, FNNcls(·). FNNemb
and FNNcls have their weights shared across the words of
a caption. Each Dndec consists of a masked multi-head self-
attention, a layer-normalization (LN) process, another multi-
head attention that attends at Z, followed by another LN, an
FNN, and another LN.

We model each Dndec as a function taking two inputs,
Undec ∈ RTw×V

ndec
e and Z, and having as output Hndec

dec ∈
RTw×V

ndec
e , with H0

dec = H′dec, U0 = Y, and V 0
e = W . All

FNNs of each Dndec have input-output dimensionality of V ndec
e .

We use Natt attention heads and for the multi-head attention
layers and pd dropout probability. For the implementation
details, we refer the reader to the paper of Transformer
model [7]. FNNemb takes as an input Y and its output is
processed by the positional encoding process, as

H′dec = Penc(FNNemb(Y))), (8)

where Penc is according to the original paper [7]. H′dec is
processed serially by the Ndec decoder blocks, as Hndec

dec =

Dndec(Hndec−1
dec ,Z), and then we obtain Ŷ as

Ŷ = FNNcls(H
Ndec
dec ). (9)

We optimize jointly the parameters of the encoder and decoder,
by minimizing the cross-entropy loss between Y and Ŷ.

III. EVALUATION

To evaluate our method, we employ the dataset and protocol
defined at the AAC task at the DCASE2020 challenge. The
code and the pre-trained weights of our method are freely
available online1. We also provide an online demo of our
method, with 10 audio files, the corresponding predicted
captions, and the corresponding ground truth captions2.

1https://github.com/haantran96/wavetransformer
2https://haantran96.github.io/wavetransformer-web-demo/

A. Dataset and pre- and post-processing

We employ the freely available and well curated AAC
dataset, Clotho, consisting of around 5000 audio samples
of CD quality, 15 to 30 seconds long, and each sample is
annotated by human annotators with five captions of eight
to 20 words, amounting to around 25 000 captions [4], [17].
Clotho is divided in three splits: i) development, with 14465
captions, ii) evaluation, with 5225, and iii) testing with 5215
captions. We employ development and evaluation splits which
are publicly and freely available. We extract F = 64 log mel-
band energies using Hamming window of 46ms with 50%
overlap from the audio files, resulting to 1292 ≤ Ta ≤ 2584,
for audio samples whose length is between 15 and 30 seconds.
During training, to mitigate the length difference of the audio
samples in Clotho, in each mini-batch we make all input
audio samples to have same length by pre-pending zeros to
the shorter ones.

We process each caption and we prepend and append
the <sos> (start-of-sentence) and <eos> (end-of-sentence)
tokens, respectively. Additionally, we process the development
split and we randomly select and reserve 100 audio samples
and their captions in order to be used as a validation split
during training. These 100 samples are selected according to
the criterion that their captions do not contain a word that
appears in the captions of less than 10 audio samples. We
term the resulting training (i.e. development minus the 100
audio samples) and validation splits as Devtra and Devval,
respectively. We also provide the file names from Clotho
development split used in Devval, at the online repository of
WaveTransformer2. We post-process the output of WaveTrans-
former during inference, employing both greedy and beam
search decoding. Greedy decoding stops when <eos> token
or when 22 words are generated. During training, to mitigate
the length difference of the captions in Clotho, in each mini-
batch we make all captions to have same length by appending
<eos> tokens to the shorter ones.

B. Hyper-parameters, training, and evaluation

We employ the Devtra (as training split) and Devval (as val-
idation split) to optimize the hyper-parameters of our method,
using an early stopping policy with a patience of 10 epochs.
We employ Adam optimizer [18], a batch size of 12, and
clipping of the 2-norm of the gradients to the value of 1.
The employed hyper-parameters of our method are Nt = 4,
Ntf = 3, Cnt

out = Ve = 128, F ′tf = 1, Ndec = 3, Natt = 4,
pntf = pd = 0.25, and beam size of 2. This leads to the
modelling of 7Nt − 1 = 27 frames, equivalent to 0.7 seconds
for current X, for Etemp.

To assess the performance of WaveTransformer (WT) and
the impact of Etemp, Etf, Emerge, and beam search, we employ
the WT, WT without Etf and Emerge (WTtemp), without Etemp
and Emerge (WTtf), and without Emerge (WTavg), where we
replace Emerge with an average between Etemp and Etf. We
evaluate the performance of WT with greedy decoding and
with beam searching (indicated as WT-B) on Clotho evaluation
split and using the machine translation metrics BLEU1 to

578



TABLE I
RESULTS ON CLOTHO EVALUATION DATASET. Bn STANDS FOR BLEUn . BOLDFACE FONTS INDICATE THE BEST VALUES FOR EACH METRIC

Model B1 B2 B3 B4 METEOR ROUGEL CIDEr SPICE SPIDEr
TRACKE (w/o MT) [6] 50.2 29.9 18.3 10.2 14.1 33.7 23.3 09.1 16.2
NTT (w/o MT, DA, and PP) [11] 52.1 29.4 17.4 10.3 13.8 33.5 23.2 08.5 15.8
NTT (MT+PP, w/o DA) [11] 52.0 31.2 20.0 12.7 14.0 33.7 26.1 08.2 17.2
WTtemp 45.8 25.9 15.4 08.8 13.9 32.0 19.8 08.7 14.2
WTtf 47.9 28.0 17.1 10.2 14.7 33.1 24.7 09.3 17.0
WTavg 47.9 28.1 17.1 10.3 14.8 33.0 24.7 09.4 17.0
WT 48.4 28.2 17.4 10.2 14.8 33.2 24.7 09.9 17.3
WT-B 49.8 30.3 19.7 12.0 14.3 33.2 26.8 09.5 18.2

BLEU4 scores, METEOR, and ROUGEL [19], [20], [21], and
the captioning metrics CIDEr, SPICE, and SPIDEr [22], [23],
[24]. In a nutshell, BLEUn measures a weighted geometric
mean of modified precision of n-grams, METEOR measures
a harmonic mean of recall and precision for segments between
the two captions, and ROUGEL calculates an F-measure
using the longest common sub-sequence. On the other hand,
CIDEr calculates a weighted cosine similarity of n-grams,
using term-frequency inverse-document-frequency weighting,
SPICE measures how well the predicted caption recovers
objects, attributes, and their relationships, and SPIDEr is the
average of CIDEr and SPICE, exploiting the advantages of
CIDEr and SPICE.

Additionally, we compare our method with the two highest-
performing AAC methods, NTT [11] and TRACKE [6], devel-
oped and evaluated using only Clotho development and eval-
uation splits. NTT uses different components, like multi-task
learning (MT), data augmentation (DA), and post-processing
(PP), but authors provide results without these components.
TRACKE is the current SOTA, it also uses MT but the authors
provide results without MT. We compare our WT against
TRACKE without MT and NTT without (w/o) DA.

IV. RESULTS

Table I presents the results of WT, NTT, and TRACKE,
where our comparison is limited to methods that are using
only the publicly available splits of Clotho. It must be noted
that both the systems presented at the papers of the NTT and
TRACKE methods, employ data augmentation (DA) and/or
multi-task learning (MT) schemes, achieving higher SPIDEr.
Since WT is not employing MT and DA, in Table I we
compare to the version of NTT and TRACKE methods that
have similar set-ups as the WT. As can be seen, the learning
of time-frequency information (WTtf) can lead to better results
than learning temporal information (WTtemp) instead. We hy-
pothesize that this is because the decoder can learn an efficient
language model, filling the connecting gaps (e.g. interactions
of objects) between sound events learned from Etf. However,
from the results it can be seen that employing both Etemp and
Etf increases more the performance of the WaveTransformer
(WT).

Comparing the different scores for the employed metrics
and for the WTtf and WT cases, shows that the utilization
of Etemp is not contributing much in the ordering of words,
as indicated by the difference of BLEU metrics between

WTtf and WT. We can see that with the Etemp, our method
learns better attributes of objects and their relationships, as
indicated by CIDEr and SPICE scores. Thus, we argue that
Etemp contributes in learning attributes and interactions of
objects, while Etf contributes information about objects and
actions (e.g. sound events). Also, by observing the results for
WTavg, we can see that a simple averaging of the learned
information by Etemp and Etf leads to a better description
of objects, attributes, and their relationships (indicated by
SPICE). Though, as can be seen by comparing WTavg and
WT, the Emerge manages to successfully merge the information
by Etemp and Etf. The utilization of beam search (WT-B)
gives a significant boost to the performance, reaching up to
18.2 SPIDEr. Compared to TRACKE and NTT methods, we
can see that when excluding DA, MT, and PP, our method
(WT) performs better. Additionally, WT-B performs better
than NTT with MT and PP. Our post-processing consists only
on using beam search, where the NTT method involves a
second post-processing technique by augmenting the input
data and averaging the predictions. Thus, WT surpasses the
other methods that is compared against.

Finally, two, high SPIDEr-scoring, captions are for the
files Flipping pages.wav, and 110422 village dusk.wav of the
evaluation split of Clotho. Our predicted captions for each of
these files, using WT-B, are: “a person is flipping through the
pages of a book” and “a dog is barking while birds are chirping
in the background”, respectively, and the best matching ground
truth captions are “a person is flipping through pages in a
notebook” and “a dog is barking in the background while some
children are talking and birds are chirping”, respectively.

V. CONCLUSION

In this paper we presented a novel architecture for AAC,
based on convolutional and feed-forward neural networks,
called WaveTransformer (WT). WT focuses on learning long
temporal and time-frequency information from audio, and
expressing it with text using the decoder of the Transformer
model. We evaluated WT using the dataset and the metrics
adopted in the AAC DCASE Challenge, and we compared
our method against previous SOTA methods and the DCASE
AAC baseline. The obtained results show that learning time-
frequency information, combined with a good language model,
can lead to good AAC performance, but incorporating long
temporal information can boost the obtained scores.

579



ACKNOWLEDGEMENT

The authors wish to thank D. Takeuchi and Y. Koizumi
for their input on previously reported results, and to acknowl-
edge CSC-IT Center for Science, Finland, for computational
resources. Part of the needed computations was implemented
on a GPU donated from NVIDIA to K. Drossos. Part of the
work leading to this publication has received funding from
the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 957337, project MAR-
VEL.

REFERENCES

[1] K. Drossos, S. Adavanne, and T. Virtanen, “Automated audio captioning
with recurrent neural networks,” in 2017 IEEE Workshop on Applica-
tions of Signal Processing to Audio and Acoustics (WASPAA), 2017.

[2] M. Wu, H. Dinkel, and K. Yu, “Audio caption: Listen and tell,”
2019 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), May 2019.

[3] K. Nguyen, K. Drossos, and T. Virtanen, “Temporal sub-sampling of
audio feature sequences for automated audio captioning,” in Work-
shop on Detection and Classification of Acoustic Scenes and Events
(DCASE2020), 2020.

[4] K. Drossos, S. Lipping, and T. Virtanen, “Clotho: an audio captioning
dataset,” in 2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2020.

[5] J. Naranjo-Alcazar, S. Perez-Castanos, P. Zuccarello, and M. Cobos,
“Task 6 dcase 2020: Listen carefully and tell: An audio captioning
system based on residual learning and gammatone audio representation,”
Tech. Rep., DCASE2020 Challenge, Jun. 2020.

[6] Y. Koizumi, R. Masumura, K. Nishida, M. Yasuda, and S. Saito, “A
transformer-based audio captioning model with keyword estimation,” in
INTERSPEECH 2020, 2020.

[7] A. Vaswani et al., “Attention is all you need,” in 31st Conference on
Neural Information Processing Systems (NeurIPS 2017), 2017.

[8] A. Shi, “Audio captioning with the transformer automated audio
captioning,” Tech. Rep., DCASE2020 Challenge, 2020.

[9] D. Serdyuk, N.-R. Ke, A. Sordoni, A. Trischler, C. Pal, and Y. Bengio,
“Twin Networks: Matching the future for sequence generation,” CoRR,
vol. abs/1708.06742, 2017.

[10] K. Drossos, S. I. Mimilakis, S. Gharib, Y. Li, and T. Virtanen, “Sound
event detection with depthwise separable and dilated convolutions,” in
2020 International Joint Conference on Neural Networks (IJCNN), 2020.

[11] D. Takeuchi, Y. Koizumi, Y. Ohishi, N. Harada, and K. Kashino,
“Effects of word-frequency based pre- and post- processings for audio
captioning,” in Workshop on Detection and Classification of Acoustic
Scenes and Events (DCASE2020), 2020.

[12] H. Wang, B. Yang, Y. Zou, and D. Chong, “Automated audio captioning
with temporal attention,” Tech. Rep., DCASE2020 Challenge, 2020.

[13] E. Çakır, K. Drossos, and T. Virtanen, “Multi-task regularization based
on infrequent classes for audio captioning,” in Workshop on Detection
and Classification of Acoustic Scenes and Events (DCASE2020), 2020.

[14] E. Çakır, G. Parascandolo, T. Heittola, H. Huttunen, and T. Virtanen,
“Convolutional recurrent neural networks for polyphonic sound event
detection,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 25, no. 6, pp. 1291–1303, 2017.

[15] A. den Oord et al., “Wavenet: A generative model for raw audio,”
in 9th International Speech Communication Association (ISCA) Speech
Synthesis Workshop, 2016.

[16] Hyungui Lim, J. Park, K. Lee, and Yoonchang Han, “Rare sound event
detection using 1d convolutional recurrent neural networks,” Tech. Rep.,
DCASE2020 Challenge, 2017.

[17] S. Lipping, K. Drossos, and T. Virtanen, “Crowdsourcing a dataset of
audio captions,” in Workshop on Detection and Classification of Acoustic
Scenes and Events (DCASE2019), 2019.

[18] D. P Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proceedings of the International Conference on Learning Represen-
tation (ICLR), 2014.

[19] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for
automatic evaluation of machine translation,” in 40th annual meeting on
association for computational linguistics. Association for Computational
Linguistics, 2002.

[20] A. Lavie and A. Agarwal, “Meteor: An automatic metric for mt
evaluation with high levels of correlation with human judgments,” in
second workshop on statistical machine translation, 2007.

[21] C.-Y. Lin, “ROUGE: A package for automatic evaluation of summaries,”
in Text Summarization Branches Out, 2004.

[22] R. Vedantam, C. Lawrence Zitnick, and D. Parikh, “CIDEr: Consensus-
based image description evaluation,” in Proceedings of the IEEE
conference on computer vision and pattern recognition (CVPR), 2015.

[23] P. Anderson, B. Fernando, M. Johnson, and S. Gould, “Spice: Semantic
propositional image caption evaluation,” in European Conference on
Computer Vision, 2016.

[24] S. Liu, Z. Zhu, N. Ye, S. Guadarrama, and K. Murphy, “Improved
image captioning via policy gradient optimization of spider,” in 2017
IEEE International Conference on Computer Vision (ICCV), 2017.

580


