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Abstract—Single-photon lidar devices are able to collect an
ever-increasing amount of time-stamped photons in small time pe-
riods due to increasingly larger arrays, generating a memory and
computational bottleneck on the data processing side. Recently, a
sketching technique was introduced to overcome this bottleneck
which compresses the amount of information to be stored and
processed. The size of the sketch scales with the number of
underlying parameters of the time delay distribution and not,
fundamentally, with either the number of detected photons or
the time-stamp resolution. In this paper, we propose a detection
algorithm based solely on a small sketch that determines if there
are surfaces or objects in the scene or not. If a surface is detected,
the depth and intensity of a single object can be computed in
closed-form directly from the sketch. The computational load of
the proposed detection algorithm depends solely on the size of
the sketch, in contrast to previous algorithms that depend at
least linearly in the number of collected photons or histogram
bins, paving the way for fast, accurate and memory efficient
lidar estimation. Our experiments demonstrate the memory and
statistical efficiency of the proposed algorithm both on synthetic
and real lidar datasets.

Index Terms—Single photon lidar, compressed learning,
sketching, surface detection, reduced data transfer

I. INTRODUCTION

Single photon counting light detection and ranging (lidar)
has become a prominent tool for 3D depth imaging due to
its capacity to obtain high depth resolution measurements [1],
[2] using low-power, eye-safe laser sources [3]. The technique
consists of emitting a series of light pulses and detecting each
individual photon as they arrive with a single photon avalanche
diode (SPAD). When an individual photon is incident on the
SPAD, an avalanche of electrical charge carriers is induced
that is directly detectable as a digital signal [2] and can be
further equated to a time delay between the emission of a light
pulse and the detection of a photon by a time-correlated single
photon counting (TCSPC) device. The ensemble of individual
photon time delays can be characterised by a histogram, where
the mode (a peak) determines the distance of an object or
surface in the field of view. Multiple peaks in the histogram
can suggest the presence of multiple surfaces of varying
intensity in the scene being captured. The image restoration
task reduces to inferring the positions and intensities of the
peaks for each pixel in the image.
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Typically, either the time-stamp information of all the
detected photons or the histogram of bin width resolution
∆t has to be recorded, stored in memory and, in general,
transferred off-chip for estimation of the location and intensity
parameters. The rapid emergence of high resolution, fast frame
rate lidar devices [4] pose a significant challenge for both
the storage and transfer of large volumes of time-of-flight
information. Moreover, as the 3D data cube scales with either
the resolution ∆t or the number of photons n, most existing
3D reconstruction algorithms in the literature [5] have com-
putational complexity that also scale with these parameters. A
host of methods have been proposed to tackle the memory,
computational and data transfer complexities associated to
high photon count, high resolution lidar data. Henderson et
al. [6] proposed a method that uses a gated procedure to
coarsely bin the time stamp of detected photons. A coarser
bin length can reduce the overall size of the histogram,
leading to a reduced memory requirement and smaller data
transfer. In a similar vein, Zhang et al. [7] propose a method
of reducing the data transfer of photon detection times by
performing a coarse to fine bin approximation of the original
histogram. In both of these methods, a significant trade-off
between compression and temporal resolution exists which
could eventually ensue in a suboptimal image reconstruction
without making full use of the high resolution potential of
the lidar device. Compressed sensing based approaches [8]–
[10] provide an alternative compression scheme that have
been proposed to exploit the sparsity of natural images in
some domain to reduce signal acquisition and the overall
information needed to store in memory and transfer off-chip.
These methods compress along the spatial domain only and do
not tackle the high resolution and/or high photon dimensions
suffered in the temporal domain.

A novel sketching based approach was recently proposed
in [11] as a solution to the data transfer bottleneck that does
not suffer from an inherent trade-off between compression
and temporal resolution. A compact representation, or a so-
called sketch, of the time-of-flight (ToF) distribution can be
computed using the detected photon time-stamps in an online
manner. Fundamentally, the size of the sketch scales with the
parameters of the ToF model (i.e. the positions and intensities
of the objects) and is independent of both the temporal
resolution ∆t and the number of photons n. It was shown
on real-life datasets that the compression rate could amount
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to up to 150× whilst retaining all the salient information
required to estimate the parameters of the ToF model. In this
paper, we extend the sketched lidar framework by developing
a surface detection algorithm that can detect the presence of
object/surface in the scene. In contrast to previous surface
detection algorithms [12]–[14] which have a complexity which
is at least linear in the number of photons or histogram bins,
our method only requires access to the sketch, and has a
computational load proportional to the sketch size.

The proposed algorithm therefore paves the way for an
extremely quick 3D depth imaging reconstruction algorithm
where the majority of pixels have no object, which is often
the case. Below we outline the main contributions of the paper.

• We propose a detection algorithm that only requires
information from a small sketch.

• We study the robustness of the sketched detection al-
gorithm for different sketch sizes, signal-to-background
ratios and photon counts.

• We analyse the algorithm on a real lidar dataset, demon-
strating its good performance in the presence of high
background noise.

The paper is organised as follows. In Section II, the back-
ground of sketched lidar is discussed. In Section III, we
propose the sketched detection algorithm. In Section IV, we
analyse the performance of the sketched detection algorithm
on both synthetic and real-life datasets. We finish with a
discussion in Section V.

II. SKETCHED LIDAR

Assume there are K distinct reflecting surfaces in the
field of view, and denote by αk and α0 the probability
that the detected photon originated from the kth surface and
background sources, respectively. For 1 ≤ p ≤ n, one can
model the time of arrival of the pth photon detected, denoted
by xp ∈ [0, T − 1], by the following mixture distribution [15]

π(xp|α0, ..., αK , t1, ..., tK) =

K∑
k=1

αkπs(xp|tk) + α0πb(xp),

(1)
where

∑K
k=0 αk = 1. The distribution of the photons origi-

nating from the signal is defined by πs(xp|t) = h(xp− t)/H ,
where the impulse response of the system and its associated in-
tegral are denoted by h and H =

∑T
t=1 h(t), respectively. The

distribution of photons originating from background sources
is in general uniformly distributed, πb(xp) = 1/T , over the
interval [0, T − 1].

In [11] to tackle the data transfer bottleneck associated with
high resolution, high rate single photon lidar. Central to the
framework is the construction of a compact representation of
the time-of-arrival data that encodes sufficient information re-
quired to infer the parameters, θ := (α0, . . . , αK , t1, . . . , tK),
of the observation model in (1). The compact representation,
or so-called sketch, denoted by zn ∈ Cm is defined by

zn :=
1

n

n∑
i=1

Φω(xi), (2)

where Φω(x) = [eiωjx]mj=1 is the feature function associated
with the sketch and i =

√
−1. As will be discussed further,

the size of the sketch typically scales solely with the number
of surfaces in the scene such that m = O(K). The sketch
has the favourable property that it can be updated in an online
fashion with each incoming photon throughout the duration
of the acquisition time. Thereafter, only the resultant sketch
zn needs to be stored and/or transferred off-chip to further
estimate the parameters θ of the observation model.

The reader may notice that the sketch is equivalent to
the empirical characteristic function sampled at frequencies
ωj , and Ψπ(ω) = Ex∼πΦ(x) is the corresponding expected
characteristic function (CF) [16], [17]. The CF has the special
property that it exists for all probability distributions and
captures all the information of the distribution, providing a
one-to-one correspondence. For a single depth observation
model (K = 1), we define the CF of the observation model
in (1) by

Ψπ(ω) = α1ĥ(ω)eiωt + α0 sinc(ωT/2), (3)

where ĥ denotes the (discrete) Fourier transform of the impulse
response function h.

It is well documented in the empirical characteristic func-
tion (ECF) literature e.g. [16], [18], [19], that a sketch zn
computed over a finite dataset X = {x1, . . . , xn}, satisfies the
central limit theorem. Formally, a sketch zn ∈ Cm converges
asymptotically to a Gaussian random variable

zn
dist−−→ N

(
Ψπ, n

−1Σθ
)
, (4)

where Σθ ∈ Cm×m has entries (Σθ)ij = Ψπ(ωi − ωj) −
Ψπ(ωi)Ψπ(−ωj) for i, j = 1, 2, . . . ,m.

The sketched lidar inference task reduces to solving the
following optimization problem

θ̂ = arg min
θ
‖zn − Ex∼πΦ(x)‖2W, (5)

where W ∈ Cm×m is a positive definite Hermitian weighting
matrix chosen as the precision matrix W = Σ−1

θ . The esti-
mator is asymptotically optimal in the sense that it minimises
the variance of the estimator θ̂ [19].

A novel sampling scheme was proposed in [11] that selected
frequencies ω which ensured no background photon informa-
tion (noise) would be encoded in the sketch. By selecting the
frequencies ωj = 2πj/T for j ∈ [1, T − 1] (i.e. avoiding the
zero frequency of the finite basis), it can be seen that the CF
Ψπ in (3) is only sampled at regions where sinc(ωT/2) = 0,
resulting in a sketch that is effectively blind to background
noise. As a consequence, the estimates θ̂ that minimise (5)
are unbiased from the presence of photons originating from
background sources. Fundamentally, the size of the sketch m
scales with the degree of parameters in the observation model
(i.e. the number of surfaces in the scene) and, crucially, is
independent of both the resolution ∆t and the number of
photons n. The sketched lidar framework therefore enables
significant compression of the time-of-arrival data without
sacrificing temporal resolution or estimation accuracy.
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III. DETECTION ALGORITHM

A. Motivation

If there are no objects present in the line-of-sight of the
lidar device (outdoor setting), the recorded pixels will only
consist of photon detections corresponding to background
illumination, i.e. K = 0 and α0 = 1 in (1). Detecting and
discarding pixels without peaks can avoid estimating non-
existing surfaces, while reducing the computational load of
posterior depth estimation. In this work, we propose a robust
and fast goodness-of-fit test, which decides whether a given
pixel only contains background photons.

B. Goodness-of-Fit Test

The decision rule that forms the basis of the sketched detec-
tion test is centred around accepting or rejecting a hypothesis
on a candidate observation model. By H0, we define the null
hypothesis by

H0 : π(x) = πb(x) (6)

and the alternative hypothesis H1 by

H1 : π(x) 6= πb(x) (7)

C. Histogram-Based Tests

The hypothesis test is equivalent to testing if the pho-
tons are distributed according to an homogeneous Poisson
process. Under the inter-arrival time, ∆x = xi+1 − xi is
distributed according to an exponential random variable with
parameter n/T . Hence, a standard test consists of computing
the Kolmogorov-Smirnov (K-S) statistic using the empirical
inter-arrival time distribution. However, this test has important
drawbacks. First, the statistic requires storing all the time-
stamps, scaling linearly in the number of collected photons
n or histogram size T . Secondly, the test cannot account for
the discrete nature of the time-stamps collected by the TCSPC
device.

An alternative amenable to discrete time-stamps consists in
checking whether the photon count in all Tr ≤ T bins of a
coarse histogram have a mean close to n/Tr (the expected
number of photons under H0), using a χ-squared test. In
this setting, if Tr is small, small peaks can be hidden in the
coarse depth resolution, hindering the detection and posterior
depth estimation performance. On the other hand, if Tr is
too large, a small number of photons per bin would depart
significantly from the Gaussianity assumption of the χ-squared
test, degrading the performance of the method. This trade-off
is shown in the experiments in Section IV.

D. Sketch-Based Test

The sketches described in Section II can be applied to
discrete TCSPC time-stamps, and they also provide a solution
for the trade-off between depth resolution and spatial, while
only requiring a very small number of statistics m.

As explained in Section II, the sketches converge quickly
to a Gaussian distribution, and hence they are amenable to
use in a χ-squared test. This test has been used extensively
throughout the ECF literature to form hypothesis, normality

and detection tests based on the characteristic function and its
empirical counterpart [20], [21]. Under the assumption of no
surfaces, we have E{zn} = 0 and Σθ is just the identity, hence

D2 := ‖zn‖22, (8)

is used as the test statistic to form a one-sided hypothesis
test for H0 against H1. Under the null hypothesis H0, the
squared distance follows D2 dist−−→ χ2

ν in distribution with ν =
m−2K−1 degrees of freedom [21]. One can therefore reject
the null hypothesis H0 at significance level β if D2 > z̄β
where z̄β is the upper β-percentile of the χ2

ν distribution.
Importantly, the decision rule is based solely on the sketch

of size m. This is significant as (i) the full data of the TCSPC
histogram is not required in the computation and can be
discarded from memory (ii) the squared test statistic can be
computed in O(m).

E. Extension to Non-Constant Background

In some practical settings, the distribution of background
photons πb might not be exactly constant, for example due
to pile-up phenomena [22]. In these cases, the sketched test
statistic can be easily modified to account for a data-driven
π̂b, using background photons collected in a calibration step,

ẑn = Eπ̂b
{Φω(xi)}. (9)

The test statistic is then D2 := ‖zn− ẑn‖22. It is worth noting
that the data-driven test can be interpreted as a random features
version of the maximum mean discrepancy [23].

F. Spatial Regularization

Neighbouring pixels in a lidar scene typically exhibit the
same number of surfaces owing to spatial correlation. Ex-
ploiting the inherent spatial correlation in typical lidar scenes
can further reduce the occurrence of false positives. In [13],
Tachella et al. proposed a total variation (TV) based spatial
regularization that created a more homogeneous map of the
present targets. Here we include a similar spatial regularization
based on the goodness-of-fit. Formally, the TV based spatial
regularization is defined by the map

v̂ := H0/1

(
arg min

v
‖v − y‖22 + τ‖v‖TV

)
(10)

where the input image y contains the χ-squared statistic D2

of pixel (i, j), ‖·‖TV is the isotropic TV operator, τ is a
user-defined regularization parameter and H1/0 is a hard-
thresholding operator which assigns 1 to positive inputs and 0
otherwise. In Section IV, we show this spatial regularization
can help remove a proportion of false positive alarms produc-
ing a more homogeneous detection map.

G. Posterior Depth Estimation

Once the pixels containing at least one surface have been
identified, the depth is estimated by solving the optimization
problem in (5), as detailed in [11]. The depth estimation also
scales only in the number of sketches m.
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IV. EMPIRICAL RESULTS

In this section, we evaluate the sketch-based detection
scheme on both real and synthetic data. First, we analyse
the effect the signal-to-background ratio (SBR), defined by
SBR= α/(1 − α), and the photon count n on both the
true positive and false alarm rate, using a Gaussian impulse
response with standard deviation σ = T/100, for T = 5000.
Figure 2 shows a map of the empirical probability of detecting
a single peak for various SBR’s and photon counts for the
proposed sketch-based detection. Even for moderately high
SBR, for example SBR= 1, the detection scheme only requires
approximately 20 photons to achieve detecting the single peak
with high probability. Figure 1 shows the SBR/photon count
level-curves for a true positive rate of 95% for various sketch
sizes and full-data approaches. For the full-data approach, a
χ2 test was constructed on the true observation model in (1)
where adjacent bins were concatenated to maximise the power
of the hypothesis test. For reference, we also include a K-S test
which is again performed on the full data (see [24] for details).
For each test the significance level was set at β = 0.05. Figure
3 depicts the empirical probability of false alarm (PFA) as a
function of the photon count for various sketch sizes and for
the aforementioned full data hypothesis tests.

10
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-2

10
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Fig. 1. Detection performance of the sketch based method for sketch sizes
of m = 3, 5, 10, the coarse histogram test for histograms of size Tr =
10, 50, 100, and the full data K-S test. The graphs correspond to a detection
probability of 95%.
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Fig. 2. Empirical probability of detection for the proposed sketch-based
detection scheme using a sketch size m = 10.

Next, we compare the proposed sketch-based detection
algorithm with the χ2 test on the full data observation model
as well as the two detection methods proposed by Tachella
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Fig. 3. Probability of false alarm of the sketch based method for sketch
sizes of m = 3, 5, 10, the coarse histogram test for histograms of size Tr =
10, 50, 100, and the full data K-S test.

et al. in [13], using a real lidar dataset consisting of a
polystyrene head measured at a stand-off distance of 325
metres. See details of the dataset in [12]. The dataset consists
of 200 × 200 pixels with T = 2700 histogram bins per
pixel and an approximate SBR of 0.29. Figure 4 shows the
detection maps for two different per-pixel acquisition times
(30 ms and 3 ms) corresponding to an average photon count
of 900 and 90 photons, respectively. The sketch size was set
at m = 5 and the significance level was set at 0.05 and 0.2
for the 30 ms and 3 ms acquisition times, respectively. Also
included is the proposed sketch-based method with spatial TV
regularization as discussed in Section III-F. The PD and the
PFA for each acquisition time are shown in Table I for each
detection scheme. The PD and PFA for both the sketch and
sketch plus TV regularization are depicted in Figure 5 for
increasing sketch size m.

Fig. 4. Detection maps of the polystyrene dataset [12] for the proposed
sketch and sketch plus TV detection schemes in comparison with other non-
compression detection techniques.

The results show that on both synthetic and real datasets the
sketch-based detection scheme achieves a similar, or better,
PD/PFA trade-off than the full data χ2 detection test. In fact
the sketch-based detection scheme achieves a far lower PFA
than the full data χ2 detection for both acquisition times.

V. CONCLUSION

In this paper, we developed a detection scheme based solely
on a compact representation sketch that is robust in detecting
the presence of a surface for each pixel in the lidar scene.
As a result, pixels consisting of non-existing surfaces can
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PD % PFA %
30ms 3ms 30ms 3ms

Tachella et al. 98.5 82.3 0.7 6.5
Tachella et al. (TV) 98.4 93.7 3.5 1.1
K-S Test (Full Data) 100 49.9 99.3 6.9
Hist. (50 Bins) 97.5 77.6 8.8 19.9
Sketch 95.4 77.2 1.4 14.4
Sketch + TV 96.6 88.1 0.9 0.5

TABLE I
PROBABILITIES OF DETECTION (PD) AND PROBABILITIES OF FALSE

ALARM (PFA) FOR THE PROPOSED SKETCH-BASED DETECTION SCHEMES
AND OTHER DETECTION ALGORITHMS. THE SKETCH SIZE IS SET AT

m = 5 AND THE FULL DATA χ2 TEST WAS CHOSEN USING 50 ADJACENT
BINS TO OPTIMISE THE PD/PFA TRADE-OFF.

0 5 10 15 20 25

80

90

100

0 5 10 15 20 25

1

10

Fig. 5. Empirical probabilities of detection (top) and false alarm (bottom) for
the evaluated detection methods using the polystyrene head dataset.

be discarded from memory reducing the overall computa-
tional and memory load of transferring and reconstructing
a lidar scene. Moreover, it is shown that only a minimal
sized sketched is required to achieve a high probability of
detection on both synthetic and real datasets, achieving a
better PD/PFA trade-off than the corresponding χ-squared
test on the original histogram data. The proposed sketch-
based detection algorithm paves the way for high accuracy
3D imaging at fast frame rates with low power consumption
without sacrificing the overall temporal resolution. In Section
IV, we considered detecting the presence of a single surface.
However, the framework can be readily used for distinguishing
between single and multiple surfaces. As a result, further
computational and memory savings can be achieved, although
we leave further analysis and experiments of multi-surface
detection for future work.
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E. Charbon, “A 30-frames/s, 252 × 144 SPAD flash lidar with 1728
dual-clock 48.8-ps tdcs, and pixel-wise integrated histogramming,” IEEE
Journal of Solid-State Circuits, vol. 54, no. 4, pp. 1137–1151, 2019.

[8] M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun,
K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive
sampling,” IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 83–91,
2008.

[9] A. Kadambi and P. T. Boufounos, “Coded aperture compressive 3-D
lidar,” in 2015 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2015, pp. 1166–1170.

[10] R. Tobin, Y. Altmann, X. Ren, A. McCarthy, R. Lamb, S. McLaughlin,
and G. S. Buller, “Comparative study of sampling strategies for sparse
photon multispectral lidar imaging: Towards mosaic filter arrays,” Jour-
nal of Optics, vol. 19, p. 094006, 09 2017.

[11] M. P. Sheehan, J. Tachella, and M. E. Davies, “A sketching framework
for reduced data transfer in photon counting lidar,” arXiv preprint
arXiv:2102.08732, 2021.

[12] Y. Altmann, X. Ren, A. McCarthy, G. S. Buller, and S. McLaughlin,
“Robust bayesian target detection algorithm for depth imaging from
sparse single-photon data,” IEEE Transactions on Computational Imag-
ing, vol. 2, no. 4, pp. 456–467, 2016.

[13] J. Tachella, Y. Altmann, S. McLaughlin, and J. . Y. Tourneret, “Fast
surface detection in single-photon lidar waveforms,” in 2019 27th
European Signal Processing Conference (EUSIPCO), 2019, pp. 1–5.

[14] J. Tachella, Y. Altmann, N. Mellado, A. McCarthy, R. Tobin, G. S.
Buller, J. Tourneret, and S. McLaughlin, “Real-time 3D reconstruction
from single-photon lidar data using plug-and-play point cloud denois-
ers,” Nature communications, vol. 10, no. 1, pp. 1–6, 2019.

[15] Y. Altmann and S. McLaughlin, “Range estimation from single-photon
lidar data using a stochastic em approach,” in 2018 26th European Signal
Processing Conference (EUSIPCO), 2018, pp. 1112–1116.

[16] A. Feuerverger and A. Mureika, “The empirical characteristic function
and its applications,” The Annals of Statistics, vol. 5, no. 1, pp. 88–97,
1977.

[17] M. Carrasco and J. P. Florens, “Generalization of GMM to a continuum
of moment conditions,” Econometric Theory, pp. 797–834, 2000.

[18] L. Hansen, “Large sample properties of generalized method of moments
estimators,” Econometrica, vol. 50, no. 4, pp. 1029–1054, 1982.

[19] A. Hall, Generalized Method of Moments. Oxford University Press, 11
2007, pp. 230 – 255.

[20] Y. Fan, “Goodness-of-Fit Tests for a Multivariate Distribution by the
Empirical Characteristic Function,” Journal of Multivariate Analysis,
vol. 62, no. 1, pp. 36–63, July 1997.

[21] I. A. Koutrouvelis and J. Kellermeier, “A goodness-of-fit test based
on the empirical characteristic function when parameters must be
estimated,” Journal of the Royal Statistical Society: Series B (Method-
ological), vol. 43, no. 2, pp. 173–176, 1981.

[22] J. Rapp, Y. Ma, R. M. Dawson, and V. K. Goyal, “High-flux single-
photon lidar,” Optica, vol. 8, no. 1, pp. 30–39, 2021.

[23] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola,
“A kernel two-sample test,” The Journal of Machine Learning Research,
vol. 13, no. 1, pp. 723–773, 2012.

[24] D. B. Campbell and C. A. Oprian, “On the kolmogorov-smirnov
test for the poisson distribution with unknown mean,” Biometrical
Journal, vol. 21, no. 1, pp. 17–24, 1979. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/bimj.4710210104

625


