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Abstract—Transforming bi-dimensional images into mono-

dimensional sequences with Peano scan (PS) allows using Hidden 

Markov Chains (HMCs) for unsupervised image segmentation. In 

some situations, such methods can be competitive compared to 

Hidden Markov Fields (HMFs) based ones, while being much 

faster. We propose enriching the HMC-PS model by introducing 

“contextual” Peano scan (CPS). It consists in associating to each 

index in the HMC obtained from PS, two observations on pixels 

which are neighbors of the pixel considered in the image, but are 

not its neighbors in the HMC. This gives three observations on 

each point of the Peano scan, which leads to a new HMC with a 

more complex structure, but whose prior and posterior laws are 

still Markovian. Therefore we can apply the usual parameter 

estimation method: Stochastic Expectation-Maximization (SEM), 

as well as study unsupervised segmentation Marginal Posterior 

Mode (MPM) so obtained. The CPS based supervised and 

unsupervised MPM are compared to the classic scan based HMC-

PS and the HMF through experiments on artificial images. They 

improve notably the former, and can even compete with the latter. 

Keywords—hidden Markov chains, Peano scan, unsupervised 

image segmentation, contextual Peano scan, SEM. 

I. INTRODUCTION 

Unsupervised statistical image segmentation based on 
hidden Markov fields (HMFs) models are widely used since the 
pioneering papers [4, 13, 18]. HMFs are well adapted and give 
satisfactory results in numerous and various applications [9, 24, 
25], among others. However, direct fast calculations are not 
tractable and one has to use iterative methods like Gibbs or 
Metropolis sampling. It significantly increases the computation 
time and makes the related methods improper in some situations. 
Using hidden Markov chains (HMCs [2, 7]) instead of HMFs is 
possible, however transforming bi-dimensional set of pixels into 
mono-dimensional sequence is not straightforward. For 
example, proceeding “line by line” gives a HMC such that pixels 
which are close in the set of pixels may be far in the sequence. 
Using Peano scan can partially overcome these difficulties and 
allows bringing closer the quality of the results obtained with the 
chains to the one obtained with the fields. Some comparison 

 
 

studies presented in [3, 11, 23] even show that in some situations 
HMCs based unsupervised segmentation can be competitive 
with HMFs based ones. The combination of Peano scan and 
HMCs has been used to segment different types of images. Let 
us mention radar ones [1, 11, 14], optical images [1, 22], or still 
MRI images [5, 6], where three-dimensional Peano scans are 
used. Peano scans have also been used in more sophisticated 
models than HMCs, like pairwise Markov chains with copulas 
[1], fuzzy Markov chains [8, 10, 15], HMCs with unknown 
number of states [20], multiresolution Markov chains [12], 
second order Markov chains [17], or still hidden semi-Markov 
chains [16]. In spite of the fact that data obtained from images 
via Peano scan have complex structure and are obviously not 
Markovian, the different mentioned methods can give quite 
interesting results, showing again the extraordinary robustness 
of HMCs and their extensions. All studies mentioned above 
show the interest of the Peano scan in problems where the 
computer time is of importance; indeed, thanks to direct, 
recursive and exact computations, HMCs based unsupervised 
segmentations are incomparably faster than HMFs based ones. 

In this paper, we aim to improve the efficiency of the HMCs 
based methods by extending the Peano scan based model 
according to the following idea. Let 𝑠 be a pixel in image, and 
let 𝑟, 𝑡, 𝑢, 𝑤 be its four nearest neighbors. Let 𝑟, 𝑡 be its 
neighbors in Peano scan. Then we propose a model in which the 
observations on remaining neighbors 𝑢, 𝑤 are also taken into 
account in the Peano scan: the image value observed on 𝑠 is 
completed by the two observations on 𝑢 and 𝑤. We show that 
using HMCs in such a “contextual” Peano scan framework 
allows reducing the classification error by up to seventeen 
percent. In addition, some experiments show the existence of 
situations in which the new model is competing with the classic 
HMF model at the efficiency level, while being much faster. 
Applying a stochastic version of the expectation-maximisation 
(EM) algorithm [19] to the new model, we notice its efficiency 
in some simple synthetic image segmentation cases studied. We 
show examples in which the new model based MPM takes the 
upper hand over well-known HMF model. 

Fast Image Segmentation with Contextual Scan 

and Markov Chains 
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The organization of the paper is as follows. In the next 
section we present the contextual Peano scan and related HMC. 
We recall the classic Bayesian Maximum Posterior Mode 
(MPM) segmentation in section three, and parameter estimation 
with the Stochastic Expectation-Maximisation (SEM) algorithm 
in specified in section four. Fifth section is devoted to 
experiments, and last section contains conclusions and 
perspectives. 

II. CONTEXTUAL PEANO SCAN AND RELATED STOCHASTIC 

CHAIN  

Let 𝑋𝑁 = (𝑋1, … ,  𝑋𝑁) be the sequence obtained by the 

Peano scan, whose construction is presented on Fig. 1. For each 

𝑛 = 2, … , 𝑁 − 1 let us set 𝑠 the corresponding pixel in 𝑆. The 

past point 𝑛 − 1 will be called 𝑟, and the next point 𝑛 + 1 will 

be called 𝑡. Then we associate to each 𝑛 = 2, … , 𝑁 − 1 one 𝑢𝑛 

and one 𝑤𝑛, which are two neighbors of 𝑛 different from 𝑟 and 

𝑡. Thus each 𝑛 = 𝑠 has four neighbors in 𝑆: two 𝑟 = 𝑛 − 1 and 

𝑡 = 𝑛 + 1 which belong to the Peano scan, and two 𝑢𝑛 and 𝑤𝑛, 

which don’t. Then for each 𝑋𝑛 we associate the triplet 𝑌𝑛
∗ =

(𝑌𝑢𝑛
, 𝑌𝑛 , 𝑌𝑤𝑛

).  

 

 

  (a)         (b)               (c) 

Fig. 1. Construction of Peano scan. 

 

 

 𝑡    𝑤    𝑤  

𝑢 𝑠 𝑤  𝑟 𝑠 𝑡  𝑢 𝑠 𝑡 

 𝑟    𝑢    𝑟  
            (a)          (b)        (c)    

 𝑤    𝑡    𝑟  

𝑡 𝑠 𝑢  𝑟 𝑠 𝑤  𝑢 𝑠 𝑡 

 𝑟    𝑢    𝑤  

            (d)          (e)        (f)    

Fig. 2. Six spatial configurations of added neighbors. In green: neighbors of 𝑠 

being neighbors in Peano scan; in blue: neighbors of 𝑠 in the set of pixels whose 

observations are associated with observation 𝑦𝑠 on 𝑠, and which are not 

neighbors of 𝑠 in Peano scan.  

Example 1 

As an example, let us consider image (b) in Fig. 1, with the 

Peano scan beginning in the upper left corner. Points 𝑛 = 1, …, 

16 are specified in Fig. 3, and added observations are specified 

in Fig. 4. 

 

1 2 15 16 

4 3 14 13 

5 8 9 12 

6 7 10 11 
 

Fig. 3. Pixels numbering in image (b) in Fig. 1, with the Peano scan beginning 

in the up left corner. 

 

  1 2 3 4 5 6 7 8   

  𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6 𝑦7 𝑦8   

  - - 𝑦14 - - - - 𝑦3   

  𝑦4 𝑦15 𝑦8 𝑦1 𝑦8 - 𝑦10 𝑦   

 

  9 10 11 12 13 14 15 16   

  𝑦9 𝑦10 𝑦11 𝑦12 𝑦13 𝑦14 𝑦15 𝑦16   

  𝑦12 - - - - 𝑦9 𝑦2 𝑦13   

  𝑦14 𝑦7 - 𝑦9 𝑦16 𝑦3 - -   

 
Fig. 4. Observations associated with pixels 1, 2, 3, …., 16 in Fig. 3, which are 

(𝑦1, 𝑦4), (𝑦2, 𝑦3),  (𝑦14, 𝑦3, 𝑦8),  (𝑦1, 𝑦4), (𝑦5, 𝑦8), 𝑦6,  (𝑦7, 𝑦10), (𝑦8, 𝑦3, 𝑦5), 

…, (𝑦16, 𝑦13), 

 

Let 𝑠, 𝑡 be neighbors in 𝑆. If they are horizontal neighbors, let 

us set 

 

𝑝ℎ(𝑦𝑡|𝑥𝑠) = ∑ 𝑝ℎ(𝑥𝑡|𝑥𝑠)𝑝(𝑦𝑡|𝑥𝑡)𝑥𝑡
         (1) 

 

Similarly, if they are vertical neighbors, we set  

 

𝑝𝑣(𝑦𝑡|𝑥𝑠) = ∑ 𝑝𝑣(𝑥𝑡|𝑥𝑠)𝑝(𝑦𝑡|𝑥𝑡)𝑥𝑡
         (2) 

 

Thus for 𝑠 in 𝑆 and 𝑢, 𝑤 neighbors of 𝑠 in the set of pixels, but 

not neighbors in the Peano scan, we have  

 

𝑝(𝑦𝑢 , 𝑦𝑠, 𝑦𝑤|𝑥𝑠) = 𝑝(𝑦𝑠|𝑥𝑠)𝑝𝑎(𝑢,𝑠)(𝑦𝑢|𝑥𝑠)𝑝𝑎(𝑤,𝑠)(𝑦𝑤|𝑥𝑠), (3) 

 

where 𝑎(𝑢, 𝑠) = ℎ if 𝑢, 𝑠 are horizontal neighbors, and 

𝑎(𝑢, 𝑠) = 𝑣 if 𝑢, 𝑠  are vertical neighbors, and the same for 

𝑎(𝑤, 𝑠). 

For example, considering (𝑦14, 𝑦3, 𝑦8) in Fig. 4 we see that 
(𝑦14, 𝑦3) are horizontal neighbors, while ( 𝑦3, 𝑦8)  are vertical 
neighbors. Then we have 

𝑝(𝑦14, 𝑦3 , 𝑦8|𝑥3) = 𝑝(𝑦3|𝑥3)𝑝ℎ(𝑦14|𝑥3)𝑝𝑣(𝑦8|𝑥3)  (4) 

Finally, for a given Peano scan, we associate with each pixel 
𝑠 the two neighbors 𝑢(𝑠), 𝑤(𝑠) in the set of pixels, which are 
not its neighbors in the Peano scan. Numbering the Peano scan 
points as (1, 2, … , 𝑁), the related contextual Peano scan is the 
sequence of triplets 

([1, 𝑢(1), 𝑤(1)], [2, 𝑢(2), 𝑤(2)], … , [𝑁, 𝑢(𝑁), 𝑤(𝑁)]),   (5) 

The classic hidden Markov chain associated with the Peano 
scan has a distribution: 

𝑝(𝑥𝑁 , 𝑦𝑁) =
𝑝(𝑥1)𝑝(𝑥2|𝑥1) …  𝑝(𝑥𝑁|𝑥𝑁−1) 𝑝(𝑦1|𝑥1) …  𝑝(𝑦𝑁|𝑥𝑁)  (6) 

 

The new model we propose, called “conditional Markov chain 

for contextual Peano scan” (CMC-CPS), is defined as follows.  

Let us consider:  

𝑞(𝑥𝑁 , 𝑦𝑁) =

𝑝(𝑥1) ∏ 𝑝(𝑥𝑛+1|𝑥𝑛)𝑁−1
𝑛=1 ∏ 𝑝(𝑦𝑛 , 𝑦𝑢(𝑛), 𝑦𝑤(𝑛)|𝑥𝑛)𝑁

𝑛=1    (7) 
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It is to be noted that 𝑞(𝑥𝑁 , 𝑦𝑁) is not the probability density of 

the pair (𝑋𝑁, 𝑌𝑁). Nonetheless, considering the (unknown) 

normalizing constant: 

 κ =
1

∑ ∫ 𝑞(𝑥𝑁,𝑦𝑁)𝑑𝑦𝑁
𝑥𝑁

            

we can define the law of the CMC-CPS with: 

𝑝(𝑥𝑁 , 𝑦𝑁) = κ𝑞(𝑥𝑁 , 𝑦𝑁)          (8) 

Definition 

Let 𝑆 be a square set of pixels of dimensions 𝑁 = 2𝑘 × 2𝑘. Let 

(1, 2, … , 𝑁) be a Peano scan (PS) of 𝑆, and let  

([1, 𝑢(1), 𝑤(1)], [2, 𝑢(2), 𝑤(2)], … , [𝑁, 𝑢(𝑁), 𝑤(𝑁)]) be the 

four nearest neighbors contextual PS (4NN-CPS) associated  

with PS.  

Then the conditional probability distribution 𝑝(𝑥𝑁|𝑦𝑁) given 

from the distribution 𝑝(𝑥𝑁, 𝑦𝑁) = κ𝑞(𝑥𝑁 , 𝑦𝑁) defined with 

(3), (7), and (8) will be called “conditional Markov chain for 

contextual Peano scan” (CMC-CPS) distribution.     

Remark 1 

The name CMC-CPS specifies that the hidden chain 𝑋𝑁 is 

Markovian conditionally on 𝑌𝑁. As we will see in the next 

section 𝑝(𝑥1|𝑦𝑁) and transitions 𝑝(𝑥𝑛+1|𝑥𝑛 , 𝑦𝑁) are 

computable, which will allow Bayesian restorations. 

Remark 2 

It is possible to extend the 4NN-CPS with richer neighborhood. 

Considering eight nearest neighbors in the set of pixels would 

lead to a contextual PS with six additional observations on each 

point in Peano scan. 

III. BAYESIAN MAXIMUM POSTERIORI MODE SEGMENTATION 

Let 1, … , 𝑁 be points of a Peano scan, and let 𝑋𝑁 = (𝑋1, … , 𝑋𝑁) 

be a Markov chain. The hidden image of classes we look for is 

then considered as being a realization of 𝑋𝑁. According to the 

construction in the previous section, let us consider 𝑌𝑁 =
(𝑌1, … , 𝑌𝑁) with 𝑌𝑛 denoting the value of observed image on 

pixel 𝑛. The pairwise stochastic process (𝑋𝑁, 𝑌𝑁) =
(𝑋1, Y1, … , 𝑋𝑁 , Y𝑁) so obtained is not a classic HMC and 

𝑝(𝑦𝑁|𝑥𝑁) has complex structure (see Remark 3 below); 

however, as 𝑝(𝑥𝑁|𝑦𝑁) is Markovian, Bayesian segmentation is 

still workable. 

The Bayesian Marginal Posterior Mode (MPM) we consider 
is defined by 

[�̂�𝑀𝑃𝑀(𝑦𝑁) =  �̂�𝑁] ⇔  [𝑝(�̂�𝑛|𝑦𝑁) =  max
𝑥𝑛∈Ω

𝑝(𝑥𝑛|𝑦𝑁)]  ;  (9) 

thus the problem lies in computing 𝑝(𝑥𝑛|𝑦𝑁). 

Let us recall the following general result. 

Proposition 

Let 𝑍𝑁 = (𝑍1, … , 𝑍𝑁) be a stochastic chain taking its values 

in a finite set Ω. Then: 

(i) 𝑍𝑁 is Markov if and only if there exist 𝑁 − 1 functions 𝜑1 , 

…, 𝜑𝑁−1 from Ω2 to R+ such that   

 𝑝(𝑧𝑁) ∝ ∏ 𝜑𝑛(𝑧𝑛, 𝑧𝑛+1)𝑁−1
𝑛=1 ,        (10)  

with ∝ meaning “proportional to”; 

(ii) for (10) verified, 𝑝(𝑧1) and transitions 𝑝(𝑧𝑛+1|𝑧𝑛) are given 

from functions 𝜑1 , …, 𝜑𝑁−1 with 

𝑝(𝑧1) =  
𝛽1(𝑧1)

∑ 𝛽1(𝑧1)𝑧1

;                (11)

      

for 1 < 𝑛 < 𝑁,  𝑝(𝑧𝑛+1|𝑧𝑛) =  
 𝜑𝑛(𝑧𝑛,𝑧𝑛+1)𝛽𝑛+1(𝑧𝑛+1)

𝛽𝑛(𝑧𝑛)
,  

where 𝛽𝑛(𝑧𝑛) can be computed with the backward recursion: 

𝛽𝑁(𝑧𝑁) = 1 ; for = 𝑁, … , 2 ,  

𝛽𝑛−1(𝑧𝑛−1) = ∑ 𝜑𝑛(𝑧𝑛−1, 𝑧𝑛)𝛽𝑛(𝑧𝑛)𝑧𝑛
,         (12) 

 

Once 𝑝(𝑧1) and 𝑝(𝑧𝑛+1|𝑧𝑛)given, each 𝑝(𝑧𝑛) is computed with 

forward recursion:  

for = 2, … , 𝑁 , 𝑝(𝑧𝑛) = ∑  𝑝(𝑧𝑛|𝑧𝑛−1)𝑝(𝑧𝑛−1)𝑧𝑛
.    (13) 

To summarize, once functions 𝜑1 , …, 𝜑𝑁−1 verifying (10) are 

given, marginal distributions 𝑝(𝑧𝑛) of the Markov chain 𝑍𝑁 =
(𝑍1, … , 𝑍𝑁) are computable. 
Let us return to the conditional Markov chain for contextual 

Peano scan distribution 𝑝(𝑥𝑁|𝑦𝑁) specified in Definition. We 

can say that 𝑝(𝑥𝑁|𝑦𝑁) ∝  𝑞(𝑥𝑁 , 𝑦𝑁), and thus 

 

𝑝(𝑥𝑁|𝑦𝑁) ∝ ∏ 𝜑𝑛(𝑥𝑛 , 𝑥𝑛+1, 𝑦𝑁)𝑁−1
𝑛=1 ,       (14) 

 

with  

𝜑1(𝑥1, 𝑥2, 𝑦𝑁) =

𝑝(𝑥1, 𝑥2)𝑝(𝑦1 , 𝑦𝑢(1), 𝑦𝑤(1)|𝑥1)𝑝(𝑦2, 𝑦𝑢(2), 𝑦𝑤(2)|𝑥2); 

𝜑2(𝑥2, 𝑥3, 𝑦𝑁) = 𝑝(𝑥3|𝑥2)𝑝(𝑦3, 𝑦𝑢(3), 𝑦𝑤(3)|𝑥3);    (15) 

…. 

𝜑𝑁−1(𝑥𝑁−1, 𝑥𝑁 , 𝑦𝑁) = 𝑝(𝑥𝑁|𝑥𝑁−1)𝑝(𝑦𝑁 , 𝑦𝑢(𝑁), 𝑦𝑤(𝑁)|𝑥𝑁).  

Finally, functions 𝜑1 , …, 𝜑𝑁−1 verifying (2) are of the form  

𝜑1(𝑥1, 𝑥2, 𝑦𝑁) = 𝜑1(𝑥1, 𝑥2, 𝑦1, 𝑦𝑢(1), 𝑦𝑤(1), 𝑦2, 𝑦𝑢(2), 𝑦𝑤(2)); 

𝜑2(𝑥2, 𝑥3, 𝑦𝑁) = 𝜑2(𝑥2, 𝑥3, 𝑦3, 𝑦𝑢(3), 𝑦𝑤(3));  

… 

𝜑𝑁−1(𝑥𝑁−1, 𝑥𝑁 , 𝑦𝑁) = 𝜑𝑁−1(𝑥𝑁−1, 𝑥𝑁 , 𝑦𝑁 , 𝑦𝑢(𝑁), 𝑦𝑤(𝑁)).  

and thus are easy to compute. Then 𝑝(𝑥1|𝑦𝑁)  and transitions  

𝑝(𝑥𝑛+1|𝑥𝑛, 𝑦𝑁) are computable, which gives marginal 

distributions 𝑝(𝑥𝑛|𝑦𝑁) of 𝑝(𝑥𝑁|𝑦𝑁) and allows the use of  

MPM (9). 

Remark 3 

The pair (𝑋𝑁, 𝑌𝑁) has complex and only partially known 

structure. 𝑝(𝑥𝑁) is Markovian, but neither 𝑝(𝑥𝑁 , 𝑦𝑁) nor 

𝑝(𝑦𝑁|𝑥𝑁) is. In addition, for 𝑝(𝑦𝑛|𝑥𝑛) Gaussian, the 

distribution 𝑝(𝑦𝑁|𝑥𝑁) is not Gaussian in general. However all 
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this matter little as the important thing is that 𝑝(𝑥𝑁|𝑦𝑁) is 

Markovian with computable 𝑝(𝑥𝑛|𝑦𝑁).  

Example 2 

Let us specify 𝜑1, 𝜑2, …, 𝜑15  used in Example 1. According 

to Fig. 3, and (3), (15) we have: 

𝜑1(𝑥1, 𝑥2, 𝑦𝑁) =
𝑝(𝑥1, 𝑥2)𝑝(𝑦1|𝑥1)𝑝𝑣(𝑦4|𝑥1)𝑝(𝑦2|𝑥2)𝑝ℎ(𝑦15|𝑥2);   

𝜑2(𝑥2, 𝑥3, 𝑦𝑁) = 𝑝(𝑥3|𝑥2)𝑝(𝑦3|𝑥3)𝑝𝑣(𝑦8|𝑥3)𝑝ℎ(𝑦14|𝑥3);  

𝜑3(𝑥3, 𝑥4, 𝑦𝑁) = 𝑝(𝑥4|𝑥3)𝑝(𝑦4|𝑥4)𝑝𝑣(𝑦1|𝑥4);   

… 

𝜑13(𝑥13, 𝑥14, 𝑦𝑁) =
𝑝(𝑥14|𝑥13)𝑝(𝑦14|𝑥14)𝑝𝑣(𝑦9|𝑥14)𝑝ℎ(𝑦3|𝑥14);   

𝜑14(𝑥14, 𝑥15, 𝑦𝑁) = 𝑝(𝑥15|𝑥14)𝑝(𝑦15|𝑥15)𝑝ℎ(𝑦2|𝑥15);  

𝜑15(𝑥15, 𝑥16, 𝑦𝑁) = 𝑝(𝑥16|𝑥15)𝑝(𝑦16|𝑥16)𝑝𝑣(𝑦13|𝑥16).   

IV. PARAMETER ESTIMATION 

Let us suppose that 𝑝(𝑥𝑁 , 𝑦𝑁) is a classic hidden Markov 

chain (CHMC) distribution, with Gaussian 𝑝(𝑦𝑁|𝑥𝑁) and two 

different transitions depending on whether it applies to 

horizontal neighbors or vertical neighbors in the original image. 

For 𝐾 classes Ω = {1, … , 𝐾} the parameters are: 𝐾2  

probabilities 𝑝ℎ = (𝑝𝑖𝑗
ℎ )1≤𝑖,𝑗≤𝐾, with 𝑝𝑖𝑗

ℎ = 𝑝(𝑥𝑡+1 = 𝑖, 𝑥𝑡 = 𝑗) 

for 𝑖, 𝑗 neighbors in the chain and horizontal neighbors in the 

image,  𝐾2 probabilities 𝑝𝑣 = (𝑝𝑖𝑗
𝑣 )1≤𝑖,𝑗≤𝐾 , with 𝑝𝑖𝑗

𝑣 =

𝑝(𝑥𝑡+1 = 𝑖, 𝑥𝑡 = 𝑗) for 𝑖, 𝑗 neighbors in the chain and vertical 

neighbors in the image, 𝐾 means 𝑚 = (𝑚𝑖)1≤𝑖≤𝐾 and 𝐾 

variances 𝜎2 = (𝜎𝑖
2)1≤𝑖≤𝐾 of the 𝐾 Gaussian distributions  

( 𝑝(𝑦𝑠|𝑥1 = 𝑖))1≤𝑖≤𝐾 . By choosing 𝑝ℎ(𝑥𝑡|𝑥𝑠) and 𝑝𝑣(𝑥𝑡|𝑥𝑠) 

intervening in 𝑝(𝑦𝑢 , 𝑦𝑠, 𝑦𝑤|𝑥𝑠) to be equal to 𝑝𝑖𝑗
ℎ  and 𝑝𝑖𝑗

𝑣  

respectively, our new model use exactly the same parameters 

than the CHMC, so the problem is to estimate 𝜃 =

(𝑝ℎ, 𝑝𝑣 , 𝑚, 𝜎2) from the observed image 𝑌𝑁 = 𝑦𝑁 alone. As 

𝑝(𝑥𝑁|𝑦𝑁 , 𝜃𝑞) is computable and it is possible to sample from 

it, we can use Stochastic EM (SEM), which runs as follows.  

1. Initialize the parameters 𝜃0 = (𝑝ℎ,0, 𝑝𝑣,0, 𝑚0, 𝜎2,0) with 

some simple method; 

2. Compute 𝜃𝑞+1 = (𝑝ℎ,𝑞+1, 𝑝𝑣,𝑞+1, 𝑚 𝑞+1, 𝜎2,𝑞+1) from 

current 𝜃𝑞 = (𝑝ℎ,𝑞 , 𝑝𝑣,𝑞 , 𝑚,𝑞 , 𝜎2,𝑞) and 𝑦1, 𝑦2, …, 𝑦𝐿: 

- Sample 𝑥𝑁,𝑞+1 = (𝑥1
𝑞+1

, … , 𝑥𝑁
𝑞+1

) according to the Markov 

distribution  𝑝(𝑥𝑁|𝑦𝑁 , 𝜃𝑞);  

- Let 𝐻𝑞+1 be the set of couples (𝑛, 𝑛 + 1), with 𝑛 and 𝑛 + 1  

horizontal neighbors in the set of pixels, and let 𝑉𝑞+1 be the set 

of couples (𝑛, 𝑛 + 1), with 𝑛 and 𝑛 + 1  vertical neighbors in 

the set of pixels. Let 𝑆𝑖,𝑞+1 be the set of points 𝑛 such that 

𝑥𝑛
𝑞+1

= 𝑖. We have      

 

𝑝𝑖𝑗
ℎ,𝑞+1

=
∑ 1

[𝑥𝑛
𝑞+1

=𝑖,𝑥𝑛+1
𝑞+1

=𝑗]  (𝑛,𝑛+1)∈𝐻𝑞+1 

|𝐻𝑞+1|
, similar for 𝑝𝑖𝑗

𝑣,𝑞+1
, (16) 

𝑚𝑖
𝑞+1

=
∑ 𝑦𝑛𝑛∈𝑆𝑖,𝑞+1

|𝑆𝑖,𝑞+1|
 ,  𝜎𝑖,𝑞+1

2 =
∑ (𝑦𝑛−𝑚𝑖

𝑞+1
)2

𝑛∈𝑆𝑖,𝑞+1

|𝑆𝑖,𝑞+1|
.   (17) 

Let us notice that one can use a simpler approximated SEM, by 

treating 𝑝(𝑥𝑁 , 𝑦𝑁) as a CHMC, and sampling from its posterior 

law 𝑝CHMC(𝑥𝑁|𝑦𝑁 , 𝜃𝑞) instead of the real 𝑝(𝑥𝑁|𝑦𝑁 , 𝜃𝑞); we 

programmed it and it gives slightly worst results.  

V. EXPERIMENTS 

We propose a segmentation study aiming to answer the 

following questions: (i) does the new CPS model based on 

contextual Peano scan work better than the classic Peano scan 

based one? (ii) how the new model works with respect to hidden 

Markov field model? (iii) is SEM efficient? We present 

segmentation results and error ratios on Fig. 5. 

 

    
Letter Target Walk Zebra 

Class images 

    
Noisy images 

    
0.021 0.050 0.158 0.197 

Supervised segmentation with classic HMC-PS 

    
0.020 0.041 0.132 0.163 

Supervised segmentation with new CMC-CPS 

    
0.008 0.024 0.135 0.280 

Supervised segmentation with Hidden Markov Fields model 

    
0.018 0.036 0.135 0.174 

SEM based unsupervised segmentation with CMC-CPS 

 

Fig. 5. Segmentation of four class images noised with two Gaussian noise 

distributions with means 0, 1, and common variance 1. Numbers are error ratios. 
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We call “supervised” the MPM using real noise parameters 

and parameters of 𝑝(𝑥𝑁) estimated from 𝑥𝑁, while 

“unsupervised” MPM uses parameters estimated from by SEM. 

Besides, we only consider the case 𝑝𝑖𝑗
ℎ =  𝑝𝑖𝑗

𝑣 . 

Concerning point (i) we notice that the new method based on 

contextual Peano scan and related new model (CMC-CPS) 

always improves results obtained with the classic method based 

on HMC and Peano scan (HMC-PS). The gain is modest, and 

may even be negligible, in the case of homogeneous (in the 

sense that the same class areas are of large size) image like 

Letter. However, it is significant in the three remaining cases, 

where the error ratio decreases by about 17%. 

Point (ii) is of main importance. HMFs keep the upper hand 

for homogeneous images like Letter or Target; however, they 

struggle to process fine details in Walk and Zebra, and are 

downgraded by CMC-CPS. Of course, CMC-CPS is much 

faster: setting 100 samplings with Gibbs sampler, each 

sampling obtained with 100 scans, Markov field based MPM 

takes about two and half hours, while CMC-CPS, needing no 

iterations, takes about one second. Moreover, the Markov field 

considered directly uses the distributions conditional to the four 

nearest neighbors as proposed in [9], and thus it has five degrees 

of freedom for the parameters, while the Markov chain in CMC-

CPS has only three degrees of freedom for the parameters. This 

shows that the complex structure of the noise in CMC-PS is 

well adapted to the problem. Besides, we notice that when using 

CMC-CPS, unsupervised MPM may give better results that 

supervised one. This is somewhat surprising, but possible. 

Finally, we can answer to the last point (iii) noticing that ratio 

errors obtained with unsupervised CMC-CPS’s based MPM are 

close to - or even better than - those obtained with supervised 

one. 

VI. CONCLUSION AND PERSPECTIVES 

We presented a fast unsupervised segmentation Bayesian 

MPM method based on the new contextual Peano scan and 

related extension of hidden Markov chains. Compared to the 

classic Peano scan based methods the new one can reduce the 

segmentation error up to 20 %. In addition, the new method can 

give comparable results to those obtained with the hidden 

Markov fields based one, while being much faster. 

Extending the model considered to triplet Markov chains 

[21] opens huge perspectives that we hope develop in the next 

years. 
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