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Abstract—In previous works, the Local Dissimilarity Map
(LDM) was proposed to compare two binary and grayscale
images. This measure is based on a Hausdorff distance, which
allows to quantify locally the dissimilarities between images. In
this paper, we proposed the two-parameter Weibull distribution
to model the LDM and the undersampled LDMs for two
structural images. To classify structural image pairs, we used
the two parameters of Weibull distribution for each LDM as
descriptors. They are relevant to discriminate image pairs into
similar and dissimilar classes. Experiments were made on the
MNIST image dataset and in our own old print image dataset.
The results shown our approach is more accurate than the other
measures in the literature.

Index Terms—Local Dissimilarity Map, undersampled Local
Dissimilarity Map, Two-parameter Weibull distribution, Binary
classification.

I. INTRODUCTION

In today’s times, image comparison becomes essential in
view of the number of images circulating on the internet.
In this paper, we are interested in images containing only
structures. Many techniques are used to compare structural
images and to classify them. Among these, we can mention
the structural similarity index SSIM [1], [2] and the feature
similarity index FSIM [3] which are very well known and
widely used in the field of image processing. These measures
have given good results in recent years in image comparison.
For the SSIM, the similarities are calculated through a local
sliding window and the global image quality is evaluated by
calculating the average SSIM index: the MSSIM [2]. Neither
of the maps of these two measures of similarity was modeled
by a statistical distribution. Indeed, the computation of these
measures does not depend on the distance between the pixel
values of the images to be compared, but on these parameters:

the luminance and the contrast.
In this paper, we used a local measure of dissimilarity which
depends on the distance of the pixels of images to be com-
pared. This measure is the Local Dissimilarity Map (LDM).
As the SSIM, the dissimilarities are calculated through a
window: the parts of each image seen through this window
are compared by a well-defined local measure of dissimilarity.
The Local Dissimilarity Map is constructed from the euclidean
distance. We can model it by a two-parameter Weibull dis-
tribution. In addition, the undersampled Local Dissimilarity
Maps follow the same distribution. These parameters are very
relevant for classifying the LDMs of similar and dissimilar
images. The performances of the undersampled LDMs are
compared to the MSSIM and FSIM similarity measures using
the accuracy and the F1-score. They showed good perfor-
mances compared to other classical methods.
The remainder of this paper is organized as follows. Section II
presents the Local Dissimilarity Map for binary and grayscale
images. Section III introduces the statistical model. In this
section, we validated the model on the undersampled LDMs
of two old print images. Section IV reports the experimental
results. Finally, section V concludes the paper.

II. LOCAL DISSIMILARITY MAP

A. LDM for binary images

For binary images, A and B take their values in the set
{0, 1} and LDM(A,B) takes its values in R+. It corresponds
to a map of distances between A and B.

Let A and B be two binary images and p = (x, y) be the
pixel at coordinates (x, y). The LDM is defined from R2 ×
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R2 to R2 by [5] :

LDM(A,B)(p) = 1A4B(p) max(dtA(p),dtB(p)) (1)
= |A(p)−B(p)| max(dtA(p),dtB(p)), (2)

where

1A4B(p) =

{
1 if p ∈ A4B
0 otherwise,

with A4 B= (A|B) ∪ (B|A) and dtA(p) is the euclidean
distance transform of A, namely the distance between the p-
pixel and the nearest non-zero pixel of A. The eq. (2) can be
simplified for binary images [7] :

LDM(A,B)(p) = B(p) dtA(p) +A(p) dtB(p). (3)

The eq. (3) removes the max operator and the absolute value.
Hence, it represents a great interest in the modeling of the
undersampled Local Dissimilarity Maps.

B. LDM for grayscale images

In order to extend the LDM to grayscale images, in eq. (3),
we could use the real-valued distance transform RVDT from
Molchanov and Teran [6] instead of the classical distance
transform in eq. (2) or (3). This distance computes real values
using several thresholds on the image :

RVDT(p,A) =
1

a− b

b∑
i=a

d(p,Ai)ωi, (4)

with Ai = {p : A(p) ≥ i}, 0 ≤ a < b ≤ 255 and
ωi is a weight equal to 1 in the simplest case. A simple
solution could be to use this RVDT directly in eq.(2). But
in this case, distances between positions (x, y) and pixel
values (luminance) are mixed together leading to interpretation
and dynamic problems. Indeed, by mixing pure distances
(max(dtA(p),dtB(p))) and luminance differences (|A(p) −
B(p)|), the distances obtained are no longer pure positional
deviations between two pixels (p, q). We clearly want in this
paper to keep true distances for the LDM, which will be
important in the section III. One way to avoid this problem
is to use the thresholding techniques of Molchanov by slicing
grayscale images into several binary images and then compute
simple multiple LDMs between these binary images.

So the Grayscale Local Dissimilarity Map (GLDM) is
defined here as a sum of thresholded images:

GLDM(A,B)(p) =
1

N

N∑
i=1

LDM(Ai, Bi)(p), (5)

where N is the number of thresholds used in the sum, ti
is a threshold, Ai = {p ∈ A : A(p) ≥ ti}. Each threshold
ti is chosen according to a regular spacing between m =
max(min(A),min(B)) and M = min(max(A),max(B)). So
this regular spacing has a step of s = (M −m)/N .

The fig. 1 and fig. 2 show examples of LDMs for binary and
grayscale images that come from the old print dataset. A, B
and C are initially grayscale images and are binarised using

(A) (B)

(C)

(D) (E)

Fig. 1: Binary images: (A), (B) and (C). Image (D):
LDM(A,B), Image (E): LDM(A,C).

the Sauvola’s method [8]. The white regions of the LDMs
represent large differences between the images while the black
regions mean the pixels values are locally close.

III. STATISTICAL MODEL

The model used in this paper is the two-parameter Weibull
distribution. The probability density and the cumulative distri-
bution function of Weibull are :

f(t) =
α

β

(
t

β

)α−1
e−( tβ )

α

, (6)

and

F (t) = 1− e−(
t
β )
α

, (7)

respectively, for t > 0, α > 0 and β > 0. The shape
parameter is α and the scale parameter is β.

According to eq. (3), modeling the Local Dissimilarity Map
depends on the modeling of the euclidean distance transform
of the two compared images. The theorem 1 [4] gives the
distribution of the Lp norm and the L2 norm for p = 2.

Theorem 1: For non-identical, correlated and upper-bounded
random variables Xi = |pi − qi|p, the random variable ∆ =∑N
i=1Xi, with finite N , is Weibull-distributed. The density of

∆ is given by the eq. (6).
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Fig. 2: Grayscale images: (G), (H) and (I). Image (J):
LDM(G,H), Image (K): LDM(G, I).

pi and qi are respectively the vectors of the pixel values of
the first image and the second image.
If ∆ is Weibull-distributed with parameters α and β, then ∆1/p

is also Weibull-distributed with parameters pα and β1/p [11].
The pixel of a distance transform are non-identical and

upper-bounded by the distance between the two vertices of
the diagonal and the neighboring pixel values of the distance
transform are correlated [11].

For p = 2 the euclidean distance transform and the Local
Dissimilarity Map of binary images are Weibull-distributed
(see eq. (3) and [11]). The eq. (3) and eq. (5) show that the
LDM of grayscale images is a sum of euclidean distances, so
it remains a distance. According the above, LDM of grayscale
images follows a Weibull distribution.

IV. EXPERIMENTAL RESULTS

In this section, we modeled the undersampled LDMs of
the two grayscale images ((G) and (H)) quoted in Fig. 2
by the Weibull distribution and show the relevance of the
parameters (α;β) to discriminate images pairs to be compared
into similar and dissimilar classes. A classification is made
using K Nearest Neighbour. The KNN is one of the easiest
supervised learning algorithms and gives good scores in the
case of binary classification. The performances of the classifier
is calculated by taking the accuracy and the F1-scores for both
classes.

A. User datasets

In the applications, we used the well-known MNIST dataset
[9] and the old print dataset [10]. The MNIST dataset contains
70, 000 grayscale images of size 28*28 (60,000 images for
training and 10, 000 for testing). This dataset is composed of
10 classes numbered from 0 to 9. We will deal in our case with
the problem of 2-class classification (class of similar image
pairs and class of dissimilar image pairs). Unlike the MNIST
dataset, the old print dataset contains only 64 images. When
comparing images, each image must be compared with the
rest of the images in the dataset to provide the LDM of each
image pairs. Two images are similar if they belong to the same
class. So we have a considerable number of LDMs (see table
I). The storage contraint limits the number of usable images
in the MNIST dataset. In the rest of the paper, we are random
randomly selected 1, 300 images in the MNIST dataset (130
from each class) to avoid bias in the results and the storage
contraints.

TABLE I: Number of images, classes and LDMs in each
dataset.

Dataset # of images used # of classes # of LDMs
MNIST 1 300 10 844 350

Old print 64 10 2 016

B. Model validation

The Local Dissimilarity Map (Fig. 2: LDM(G,H)) is un-
dersampled with r steps, i.e the sampling is done by taking 1
pixel on r in the LDM(G,H).
The Fig. 3 shows the histograms, fitted by a two-parameter
Weibull distribution, of the undersampled LDMs. We have a
very good fitting between the pixel values and the Weibull’s
law of parameters (α; β) which depend on r.

The table II shows the two parameters of Weibull for each
undersampled LDM

TABLE II: The α and β parameters of the undersampled
LDMs.

r α parameter β parameter
1 1.0870 0.8762
2 1.0886 0.8789
3 1.0831 0.8772
4 1.0835 0.8797
5 1.0878 0.8821

We can see that LDM(G,H) does not lose much in-
formation when we undersampled the LDM with steps of
r = 1, 2, .... (see table II), because the parameters of the
distributions are approximately equals. Note that if r = 1,
we have the original LDM (not undersampled).
The next section introduces the classification of image pairs,
from the MNIST dataset and old print dataset, into similar and
dissimilar classes using the two parameters of the distribution
for each undersampled LDM.
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(a): r = 1. (b): r = 2. (c): r = 3.

(d): r = 4. (e): r = 5.

Fig. 3: The histograms, fitted by a two-parameter Weibull distribution, of the undersampled LDMs. The fig. (a), (b), (c),(d)
and (e) are respectively for the undersampled LDMs of step r = 1, 2, 3, 4 and 5 . For r = 1, it corresponds to the original
LDM (LDM(G,H)). Red is the theorical distribution and blue the two-parameter Weibull distribution.

C. Classification

In this section the performances of the undersampled
LDMs, the MSSIM and the FSIM are measured using the
K Nearest Neighbour classifier.
The fig. 4 gives the accuracy of the undersampled LDMs
as a function of the number of nearest neighbours K for
the MNIST dataset. Performances are better when K = 9.
Then in the rest of this paper, we take K = 9 to compare
the classsification scores of LDMs with those of MSSIM
and FSIM. The computation of 1, 300 images in the MNIST
dataset gives 844, 350 LDMs, 83, 850 are for similar images
and 760, 500 for dissimilar images. There is a very large
class imbalance. The number of LDMs for dissimilar images
is 9 times greater than for similar images. To balance the
classes (similar class Csim and dissimilar class Cdissim), we
randomly undersampled the majority class Cdissim. Finally,
we have 83, 850 LDMs in Csim and Cdissim. The 10-cross
validation is done on all data to give the classification scores.
The same process was done for the undersampled LDMs.
Since the size of images in the MNIST dataset is 28 ∗ 28, we
limited the computation to r = 3. The two Weibull parameters
extracted in each undersampled LDMs are used as descriptors
and are relevant to discriminate the two classes. The fig.5
shows the whole process for classifying an image pair based
on undersampled LDMs, MSSIM and FSIM.

Fig. 4: Accuracy of the undersampled LDMs as a function of
the number of nearest neighbours K of the MNIST dataset.
Undersampling was done with r steps (r = 1, 2, 3).

The table III and table IV show the performances of the
similarity measures in the MNIST and old print datasets.
On these two datasets, the undersampled LDMs achieved the
highest scores (accuracy and F1-score). Furthermore, when
the original LDMs are undersampled, the performances do
not degrade significantly (see table III and table IV), i.e
they remain stable. Thus, to classify image pairs as similar
and dissimilar, it is sufficient to undersample the LDMs by
choosing a reasonable step (which depends on the images size)
to save computing time. In table III and IV, the inference
time is the time to extract the Weibull parameters (α; β) on
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Fig. 5: Process of classifying an image pair image 1 and image 2 based on the undersampled LDMs, the MSSIM and FSIM.
For r = 1, it corresponds to the original LDM.

TABLE III: Accuracy, F1-score and inference time of the undersampled LDMs, MSSIM and FSIM for the MNIST dataset.

Measures & Metrics Accuracy F1-score Csim F1-score Cdissim Inference time (s)
r = 1 0.727 0.714 0.739 564.7

Undersampled LDM r = 2 0.722 0.709 0.733 400.43
r = 3 0.715 0.702 0.726 376.5

MSSIM 0.613 0.588 0.636 177.6
FSIM 0.674 0.656 0.691 3568.8

TABLE IV: Accuracy, F1-score and inference time of the undersampled LDMs, MSSIM and FSIM for the old print dataset.

Measures & Metrics Accuracy F1-score Csim F1-score Cdissim Inference time (s)
r = 1 0.791 0.784 0.797 103.4
r = 2 0.791 0.780 0.801 30.82

Undersampled LDM r = 3 0.744 0.720 0.765 16.31
r = 4 0.802 0.791 0.811 11.13
r = 5 0.770 0.765 0.786 9.4

MSSIM 0.614 0.593 0.633 26.02
FSIM 0.640 0.631 0.649 720.9

each undersampled LDM and classification with KNN. For
instance, if we choose r = 5 for the old print dataset, the
inference time is at least 10 times faster than for r = 1 with
comparable results. In addition, in the MNIST dataset, if we
choose r = 3 the inference time is at least 1.5 times faster
than r = 1. The undersampled LDMs give a good quality of
decision and there is not a wide gap between the performances
of the original LDMs (r = 1) and the undersampled LDMs
(r = 2, 3, ..).

V. CONCLUSION

The objective of this work was the implementation of a
method for classifying image pairs into similar and dissimilar
classes based on the shape and scale parameters of the Weibull
distribution extracted from the undersampled LDMs. The two
parameters are used as descriptors for the KNN classifier. The
undersampling of the LDMs allowed to save computing time.
The performances of our approach was compared with the
average structural similarity index (MSSIM) and the feature
similarity index (FSIM). The results show that the classifica-
tion method based on the undersampled LDMs is faster and
performs well.
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