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Abstract— With the ever-increasing emphasis on road main-
tenance to a high standard, the need for automated and robust
road damage inspection (detection and localization) systems is
becoming greater than ever. In this paper, we introduce a real-
time road damage inspection system, which has been embedded
in a drone to reconstruct 3D road geometry using stereo vision,
as well as to detect and localize road damage using disparity
map segmentation and visual simultaneous localization and
mapping. In addition, the 3D road map is built and updated,
which enables road damage inspectors to assess road conditions
in a more convenient way.

I. INTRODUCTION

A new poll of cyclists has found road damage is not just
an inconvenience to road users, it is also a safety hazard
[1]. It was reported in 2015 that an Olympic gold medalist
incurred eight fractured ribs resulting in a punctured lung
after hitting a pothole during a race [2]. Therefore, detecting,
localizing and repairing road damage, e.g., potholes and
cracks, is crucial for road maintenance, traffic safety, and
driving comfort [3].

Manual visual inspection is still the main form of road
condition assessment [4]. This process is, nevertheless, ex-
hausting, costly, time-consuming, and dangerous for the
inspectors [5]. For example, the UK Asphalt Industry Al-
liance suggested a one-off investment of £12 billion in
2014 to improve the road conditions across England and
Wales [6]. But after only three years, the UK Department
for Transport had to announce another £17.5 billion funding
scheme for road damage detection and repair across England
[7]. Unfortunately, this investment is still far from enough
[2]. Additionally, road damage inspection results are always
qualitative and subjective, as decisions depend entirely on the
inspectors’ experience and judgment [8]. Therefore, there is
an ever-increasing need to develop automated and embedded
road inspection (detection and localization) systems, which
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Fig. 1. An illustration of embedded road damage inspection (detection and
localization) system.

can provide quantitative, objective and accurate road damage
data in an efficient way [9].

Over the past decade, various technologies, e.g., the global
positioning system (GPS), vibration sensing, active sensing
and passive sensing, have been prevalently utilized to acquire
road data and assist technicians in inspecting road damages
[10]. For example, [11] developed a crowd-sourcing system
to detect and localize potholes by analyzing the accelerome-
ter data obtained from multiple vehicles, while [12] mounted
two laser scanners on a Georgia Institute of Technology
Sensing Vehicle (GTSV) to collect 3D road data for road
damage detection. Furthermore, our previous works [10] and
[13] employed an efficient dense stereo matching algorithm
to reconstruct highly precise 3D road geometry models
(accuracy: ±3 mm), and a disparity map transformation and
segmentation algorithm to detect road damage.

With the recent advance of airborne technology, drones
equipped with digital cameras provide new opportunities for
intelligent road damage inspection [14]. For example, [15]
designed a photogrammetric mapping system for drones,
which can recognize different types of road damage, e.g.,
potholes and cracks, from RGB images. Although such a
system can detect road damage with very low computational
complexity, the depth information is required to measure the
volumes of the detected road damage [16]. To obtain such
depth information, our recent work [8] embedded a real-time
GPU-friendly dense stereo matching system on a drone to ac-
quire dense 3D road damage geometry models. Additionally,
compared with monocular road damage inspection systems,
binocular systems can recover accurate absolute scales of the
reconstructed 3D road geometry models, without considering
complicated environmental hypotheses [17], [18]. Therefore,
employing binocular road damage detection and localization
systems is more feasible for drones [8].

This paper presents an intelligent binocular road damage
detection and localization system embedded on a drone, as
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illustrated in Fig. 1. This system can 1) acquire dense road
disparity/depth information, 2) reconstruct dense 3D road
surface geometry models, 3) detect road damage, 4) build
and update the environmental map, and 5) localize detected
road damage on the environmental map.

The remainder of this paper is organized as follows: Sec-
tion II reviews the state-of-the-art 3D road surface geometry
reconstruction algorithms, road damage detection algorithms,
and visual simultaneous localization and mapping (VSLAM)
algorithms. Section III introduces our road damage inspec-
tion system. The experimental results are given in Section IV
and the performance of the proposed system is also evaluated
and discussed. Finally, Section V concludes the paper.

II. LITERATURE REVIEW

A. Visual 3D Road Surface Geometry Reconstruction

To reconstruct the 3D road surface geometry models, road
images captured from different views are required [19]. This
can be realized by using either a single movable camera or a
group of synchronized cameras [20]. Structure from motion
[21], [22] and optical flow [18], [23] are two typical types of
algorithms that can be employed for 3D reconstruction when
using a single moving camera. However, it is difficult for
them to recover the absolute scales of the reconstructed 3D
models if no environmental hypotheses are considered [21].
On the other hand, stereo vision is capable of recovering 3D
model’s absolute scale, as the two cameras are fixed.

Many stereo matching algorithms [10], [16], [24], [25],
[26] have been proposed for 3D road surface geometry recon-
struction. Among them, [10] proposed PT-SRP, an efficient
and highly accurate iterative local stereo matching algorithm,
designed specifically for road surface 3D reconstruction. It
first transforms the perspective view of the target image
to the reference view, which not only boosts the stereo
matching speed, but also improves the disparity accuracy.
An efficient stereo matching algorithm is then employed to
estimate road disparities in an iterative manner. However,
PT-SRP [10] is hard to implement in parallel on GPUs.
Therefore, [8] proposed PT-FBS, a GPU-friendly road dispar-
ity estimation algorithm, embedded in a drone for real-time
road surface 3D reconstruction. Nevertheless, PT-FBS [8] is
still computationally intensive. Hence in [16], a generalized
perspective transformation (GPT) algorithm was proposed
and semi-global matching (SGM) was used for road disparity
estimation. The experimental results suggest that GPT-SGM
[16] outperforms both PT-SRP [10] and PT-FBS [8] in terms
of both efficiency and accuracy. Therefore, GPT-SGM [16]
is used in this paper to reconstruct 3D road geometry models
for road damage inspection.

B. Visual Road Damage Detection

The state-of-the-art visual road damage detection meth-
ods are developed based on either 2D image understand-
ing/analysis [27] or 3D road surface modeling [5]. The for-
mer approaches typically utilize traditional image processing
algorithms [4], [9], [12], [13], [28], [29] or modern deep
convolutional neural networks (DCNNs) [2], [30], [31], [32],

[33] to detect road damage, by performing either pixel-level
image segmentation or instance-level object recognition on
RGB or depth/disparity images. The image processing-based
approaches typically consist of four main steps: 1) image
pre-processing, 2) image segmentation, 3) shape extraction,
and 4) object recognition, while the DCNN-based approaches
address road damage detection in an end-to-end way, using
semantic segmentation or object detection networks. On the
other hand, 3D road surface modeling-based algorithms [5],
[34], [35] typically formulate the 3D road point cloud as
a quadratic surface, whose coefficients can be obtained by
performing robust surface modeling.

In our recent work [5], a novel disparity image process-
ing algorithm, referred to as disparity transformation, was
proposed to better distinguish between the damaged and
undamaged road regions. A robust 3D road surface modeling
algorithm was then used to detect road damage from the
transformed road disparity images. Later on, in [13], we
introduced a more efficient visual road damage detection
algorithm based on unsupervised disparity map segmenta-
tion, and it was proven that the energy minimization problem
introduced in [29] has a numerical solution. Furthermore,
in [16], we detected road damage by segmenting the trans-
formed disparity map using simple linear iterative clustering
[36], while in [2], we proposed a attention aggregation (AA)
framework, which can take advantage of different types of
attention models to enhance the performance of both single-
modal and data-fusion DCNNs for semantic transformed
disparity map segmentation.

C. Visual Simultaneous Localization and Mapping

The state-of-the-art VSLAM algorithms are generally clas-
sified as direct [37], indirect [38], and hybrid [39]. These
algorithms provide fundamental building blocks and can be
easily employed to localize the detected road damages.

Monocular VSLAM algorithms often cannot recover re-
liable absolute scale information [40], and thus, many re-
searchers have resorted to additional sensors, such as inertial
measurement units (IMUs) or digital cameras, to improve
the localization accuracy [41], [42]. The former are generally
known as visual-inertial odometry (VIO) systems, which fuse
the estimated visual states with the data acquired using IMUs
to enhance the robustness of the VSLAM systems [43], while
the latter typically utilize the depth information acquired
using stereo rigs to improve the absolute scale recovery [41].

Recent VIO research uses either filtering or optimization
techniques to improve the localization accuracy. For instance,
[42] considered the IMU measurements and proposed a
loosely-coupled filter to recover accurate absolute scales.
Similarly, in [44], the 6-DoF poses estimated by a paral-
lel tracking and mapping (PTAM) framework were fused
with the IMU measurements to improve odometry system
robustness. Additionally, [45] introduced a loosely-coupled
fusion method to initialize the scale and bias parameters.
[43] proposed a tightly-coupled filter to extract multi-level
patch features along with the 3D landmarks during camera
tracking. The camera poses were then estimated using a stan-
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dard extended Kalman Filter [46]. Moreover, [47] presented
a sliding window-based optimization framework, which is
also capable of selecting key-frames. In their system, a cost
function with respect to both visual re-projection error and
inertial error was formulated for camera pose optimization.

In addition to VIO systems, a binocular SLAM frame-
work with high computational efficiency and robustness
was proposed in [41] for absolute scale recovery. In recent
years, ORB-SLAM2 [48] and ORB-SLAM3 [49], two well-
known VSLAM frameworks, have achieved compelling vi-
sual odometry results [18]. Due to their superior performance
for mapping, loop-closure detection and relocalization, ORB-
SLAM2 [48] is used in this paper for road damage local-
ization. In addition, we also compare its performance with
ORB-SLAM3 [49].

III. INTELLIGENT ROAD DAMAGE INSPECTION SYSTEM

As discussed in [16], PT-SRP [10] cannot fully exploit the
parallel computing architecture, and PT-FBS [8] is very com-
putationally intensive. Therefore, GPT-SGM [16] is utilized
in this paper for dense road disparity information acquisition.
It first transforms the target road image (stereo right image)
It into the reference view using

I ′t(u, v) = It(u+ κ(u, v, φ,a), v), (1)

where

κ(u, v, φ,a) =
W
min
x=0

[
a0 + a1(v cosφ− x sinφ)− δ

]
, (2)

I ′t is the transformed target image, p = (u; v) is an image
pixel, u and v are the horizontal and vertical coordinates
of p, respectively, a = (a0; a1) stores the road disparity
projection parameters, φ is the stereo rig roll angle [50], W
is the image width, and δ is a constant set to ensure that
the disparities between the reference and transformed target
images, i.e., Ir and I ′t, are non-negative [16]. a and φ can
be estimated by minimizing [51]:

E =

∣∣∣∣∣∣∣∣d− [1k v cosφ− u sinφ
]
a

∣∣∣∣∣∣∣∣2
2

, (3)

where d = (d1; · · · ; dk) stores a group of k disparities
(note here that in this stage the disparities are estimated
using keypoint detection and matching algorithms), u =
(u1; · · · ;uk) and v = (v1; · · · ; vk) store the horizontal and
vertical coordinates of the disparities, respectively, and 1k is
a k-entry vector of ones. A dense road disparity image ` can
be estimated by solving

crag(p, dp) = c(p, dp) + min

(
crag(p− r, dp),⋃

k∈{−1,1}

crag(p− r, dp + k) + λ1,min
i
crag(p− r, i) + λ2

)
,

(4)

where c denotes the stereo matching cost, dp denotes the
disparity of p, λ1 and λ2 are two penalty parameters, and
crag(p, dp) represents the aggregated stereo matching cost at

p in the direction of r. A transformed road disparity map `′

can thus be obtained [52]:

`′(p) = `(p)+κ(u, v, φ,a)−a0−a1(v cosφ+u sinφ)+ δ.
(5)

The road damage can subsequently be detected by segment-
ing the transformed disparity images using image segmenta-
tion techniques, such as semantic segmentation DCNNs.

Then, we employ ORB-SLAM2 [49] to localize the de-
tected road damage, as well as build and update the environ-
mental map. ORB-SLAM2 [49] consists of two components:
a) tracking (front end) and b) mapping (back end). The
input of this system is a reference road image and its
corresponding depth information. The front-end tracker first
extracts features from accelerated segment test (FAST) [53]
feature points and computes their corresponding oriented
fast and rotated BRIEF (ORB) descriptors [54]. The relative
pose T k,k−1 between frame k and frame k − 1, i.e., Fk
and Fk−1, can be estimated from a set of matched corre-
spondence feature point pairs P k = (p0,k;p1,k; . . . ;pn,k)
and P k−1 = (p0,k−1;p1,k−1; . . . ;pn,k−1), where pi,k =
(ui,k; vi,k) represents the i-th matched feature point in the
k-th frame. The expression of T k,k−1 is as follows:

T k,k−1 =
[
Rk,k−1|tk,k−1

]
, (6)

where Rk,k−1 is a rotation matrix and tk,k−1 is a translation
vector. A point pCk−1 = [xk−1, yk−1, zk−1]

> in the (k − 1)-
th camera coordinate system (CCS) can be transformed to
pCk = [xk, yk, zk]

> in the k-th CCS using

pCk = Rk,k−1p
C
k−1 + tk,k−1. (7)

As the VSLAM framework used here employs a constant-
velocity motion model, T k,k−1 is first initialized as
T k−1,k−2 [48]. Then, T k,k−1 is optimized by minimizing
the following re-projection error:

ei,k(pi,k) =

∣∣∣∣∣∣∣∣π ((ξ ⊕ T k,k−1)T−1k,k−1pCi,k−1)− pi,k∣∣∣∣∣∣∣∣
γ

,

(8)
where ||·||γ denotes the robust Huber norm and ξ represents
the increment twist [48]. π(·) is the projection function. The
optimum increment twist ξ can be estimated by minimizing

ξ = argmin
ξ

∑
pi,k∈P k

wi,kei,k(pi,k), (9)

where wi,k represents the optimization weighting for the i-th
matched feature point in the k-th frame. The increment twist
is then updated using

ξ ← log (δξ ⊕T(ξ)) . (10)

Following the coarse-to-fine strategy, a motion-only bundle
adjustment (BA) is performed to optimize the k-th local
map {Fk,Qk}, where Q = [pC0,k,p

C
1,k, . . . ,p

C
m,k]

> stores
a set of 3D feature points in the k-th CCS. Furthermore,
the local map {Fk,Qk} is also updated in the mapping

643



TABLE I
ATE COMPARISON BETWEEN ORB-SLAM2 [48] AND ORB-SLAM3

[49].

Algorithm Dataset ID Mean [m] Median [m] RMSE [m] STD [m]
ORB-SLAM2 [48] 1 2.51 1.88 2.94 1.53
ORB-SLAM3 [49] 1 2.36 1.92 2.77 1.43
ORB-SLAM2 [48] 2 4.51 4.60 4.71 1.36
ORB-SLAM3 [49] 2 4.79 5.09 5.02 1.51

process using a full BA. Similarly, an optimum global joint
set X = {Q,T } can be estimated using:

X = argmin
X

∑
pi,j−1∈P j

∑
Fj∈F i

wi,jei,j , (11)

where F i stores a set of keyframes where pCi can be
observed. Finally, we eliminate outliers using X 2-test [48],
where each feature point is constrained with one-pixel vari-
ance. The detected road damages can therefore be localized,
and the 3D map is built and updated, as shown in Fig. 2.

IV. EVALUATION AND DISCUSSION

In this section, we first use the datasets in [55] to compare
ORB-SLAM2 [48] and ORB-SLAM3 [49] for road damage
localization. Then, we discuss the existing problems in the
proposed road damage detection and localization system.

We use two matrices: a) absolute trajectory error (ATE)
and b) relative distance error (RDE) to quantify the accuracy
of road damage localization, as shown in Tab. I and II,
respectively. It can be observed that ORB-SLAM2 [48] and
ORB-SLAM3 [49] perform similarly on these two datasets,
where the scenarios contain only road images (no obstacles
on road). The mean ATEs achieved are 2.36 − 2.51 m and
4.51− 4.79 m, respectively, while the mean RDEs achieved
are 0.07−0.08 m and 0.07−0.17 m, respectively. Therefore,
ORB-SLAM2 [48] and ORB-SLAM3 [49] are shown to
be two effective techniques to be used for road damage
localization.

However, the introduced road damage detection and local-
ization system has several issues. First of all, with GPT-SGM
[16], it is difficult to obtain accurate road disparity informa-
tion when the drone is flying too high, as it is difficult to
extract reliable visual features for perspective transformation.
Therefore, it is more feasible to use (unsupervised) DCNNs
trained for end-to-end road disparity estimation. Moreover,
as discussed in [2], [5], [13], a transformed disparity map is
a more informative type of visual feature for road damage
detection, but its realization requires empty roads. When the
stereo rig captures obstacles, an obstacle removal algorithm
needs to be conducted before performing roll angle and road
disparity projection model estimation, as an obstacle on the
road can lead to a significant error.

V. CONCLUSION

This paper first reviewed the state-of-the-art visual road
surface 3D geometry reconstruction algorithms, visual road
damage detection algorithms, and VSLAM algorithms. Then,
we introduced an intelligent binocular road damage detection

TABLE II
RDE COMPARISON BETWEEN ORB-SLAM2 [48] AND ORB-SLAM3

[49].

Algorithm Dataset ID Mean [m] Median [m] RMSE [m] STD [m]
ORB-SLAM2 [48] 1 0.07 0.06 0.09 0.06
ORB-SLAM3 [49] 1 0.08 0.07 0.14 0.11
ORB-SLAM2 [48] 2 0.17 0.11 0.24 0.19
ORB-SLAM3 [49] 2 0.07 0.05 0.10 0.07

Drone Trajectory
End
Visual Feature

Fig. 2. Road damage localization and environmental map creation result.

and localization system based on dense road disparity esti-
mation, road disparity transformation and segmentation, and
VSLAM. The proposed system has been successfully imple-
mented on a drone for real-time road damage inspection. We
evaluated the performance of road damage localization using
our previously published road visual odometry datasets.
The experimental results demonstrated that road damage
localization can achieve an ATE of 2.36 − 4.79 m and
an RTE of 0.07 − 0.17 m. Furthermore, we discussed the
existing challenges of the proposed road damage detection
and localization system. With these challenges overcome,
such drone-based road damage inspection systems will be
feasible for production.
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