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Abstract—This paper introduces a new Plug-and-Play (PnP)
alternating direction of multipliers (ADMM) scheme based on
a recently proposed denoiser using the Schroedinger equation’s
solutions of quantum physics. The efficiency of the proposed
algorithm is evaluated for Poisson image deconvolution, which
is very common for imaging applications, such as, for example,
limited photon acquisition. Numerical results show the superior-
ity of the proposed scheme compared to recent state-of-the-art
techniques, for both low and high signal-to-noise-ratio scenarios.
This performance gain is mostly explained by the flexibility of the
embedded quantum denoiser for different types of noise affecting
the observations.

Index Terms—Poisson deconvolution, adaptative denoiser,
Plug-and-Play, ADMM, quantum denoiser.

I. INTRODUCTION

In the field of inverse problems a primary and long-standing
challenge is the restoration of a digital image in a wide
range of applications such as denoising, deblurring, com-
pression, compressed sensing or super-resolution. In number
of applications such as limited photon acquisition, positron
emission tomography, X-ray computed tomography, etc., the
noise degrading the acquired data follows a Poisson model.
These Poisson inverse problems have a core importance in
the fields of photographic [1], telescopic [2] or medical [3]
imaging. The estimation of the underlying hidden image from
a distorted observation is often formulated as an optimization
of a cost function implementing the idea of maximum a
posteriori (MAP) estimator. This optimization task generally
leads to a unique solution following the proximal operator
[4] based iterative schemes [5]–[9] with a suitable choice of
regularizer depending on the prior statistics of the image to
estimate.

The alternating direction method of multipliers (ADMM)
[6]–[9] is a standard scheme which redefines the optimization
problem into a constrained optimization framework. A few
years back, a new procedure was introduced in this domain,
enabling the use of state-of-the-art denoisers instead of the
proximal operator, known as the plug-and-play (PnP) scheme
[10]. The PnP methods can use state-of-the-art denoisers
such as dictionary learning [11], non-local mean (NLM)
[12], block-matching and 3D filtering (BM3D) [13], etc., and
became popular for their very good performance in the field
of inverse problems (e.g., [14]–[19]). Interestingly, these PnP-
ADMM methods do not require any prior information about

the hidden image as a consequence of the intrinsic association
between the regularizer and the external denoiser.

The state-of-the-art denoisers algorithms were in general
developed for Gaussian noise, and are consequently not well-
adapted to other types of noise such as Poisson. To mitigate
this issue, it was proposed to approximately reformulate the
Poisson model into an additive Gaussian noise by using a
variance stabilizing transformation (VST) (e.g., the Anscombe
transformation [20], [21]), before employing a Gaussian de-
noiser. PnP schemes are also a way of converting the Poisson
noise affecting the observed distorted image into another possi-
bly Gaussian noise by decoupling the restoration and denoising
steps. Methods combining VST and PnP have already been
proposed in the literature. Although these VST-based PnP
schemes were shown to be very efficient for low-intensity
noise [14]–[16], they are known to exhibit inaccuracies while
dealing with high-intensity noise (i.e., low SNR) [22]. More-
over, the nonuniform behavior of the convolution operator
under a VST [15], [16], [23] introduces theoretical flaws when
dealing with image deconvolution.

In this work, we address this issue by embedding into a PnP-
ADMM scheme a new adaptative denoiser [24], [25] designed
by borrowing tools from quantum mechanics. The adaptative
nature of this denoiser makes it highly efficient at selectively
eliminating noise from higher intensity pixels, without relying
on any statistical assumption about the noise. Its efficiency
regardless of the assumption of Gaussian noise represents the
main motivation of its interest in Poisson deconvolution PnP-
ADMM algorithms, discarding the necessity of a VST.

The remainder of the paper is organized as follows. A quick
background review on PnP-ADMM algorithms is provided in
Section II. The construction of the proposed method referred
to as QAB-PnP for Poisson inverse problems is detailed
in Section III. Section IV presents the results of numerical
experiments showing the efficiency of the proposed method.
Section V draws the conclusions.

II. BACKGROUND
A. Alternating direction method of multipliers

ADMM is an iterative convex optimization method, pri-
marily designed to solve a constrained optimization problem
expressed as follows:

minimize
x,z

f(x) + g(z)

subject to Ax+Bz = c,
(1)
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where f and g are two convex functions with x ∈ IRn,
z ∈ IRm, A ∈ IRp×n, B ∈ IRp×m and c ∈ IRp. This
problem can be solved by decoupling the associated aug-
mented Lagrangian, defined as Lλ(x, z,u) = f(x) + g(z) +
(λ/2) ‖Ax+Bz − c+ u‖22 − (λ/2) ‖u‖22, (here u ∈ IRp is
the Lagrange multiplier, and λ > 0 is a penalty parameter),
leading to the following steps repeated iteratively until con-
vergence:

xk+1 = arg min
x

Lλ(x, zk,uk), (2)

zk+1 = arg min
z

Lλ(xk+1, z,uk), (3)

uk+1 = uk +Axk+1 +Bzk+1 − c. (4)

B. Plug-and-Play framework

The idea behind PnP is to provide an elegant way of splitting
the problem (1) into the measurement model (2) and the
prior term (3) so that the latter is solved separately by a
denoising method. The key benefit of this process is that the
regularizer does not need to be defined explicitly because of its
implicit dependence on the denoising operator. It can thus be
implemented without having any specific construction of the
denoiser from an optimization scheme, and has been shown
to give more refined outcomes than prior based models [7].

The PnP-ADMM scheme converges globally for any non-
expansive symmetric smooth denoising operator [17]. Recently
the fixed point convergence has been proven with weaker
conditions (e.g., [18], [19]), but we stress that all these
algorithms were constructed for Gaussian noise.

III. PROPOSED OPTIMIZATION SCHEME

A. Poisson deconvolution model

The objective of this work is to estimate an image from
its blurred version contaminated by Poisson noise. The image
formation model is governed by the Poisson process P(·) as

y = P(Hx), (5)

where y ∈ IRn
2

represents the blurred and noisy observation
of the desired image x ∈ IRn

2

(without loss of generality we
consider square images of size n× n) and H ∈ IRn

2×n2

is a
block circulant with circulant block matrix accounting for 2D
convolution with circulant boundary conditions. Note that x
and y images are presented as vectors in lexicographic order.

The MAP estimator provides an appealing way of estimat-
ing x from the observation y by maximizing the posterior
probability:

x̂ = arg max
x

P (x|y). (6)

The maximization task (6) can be reformulated equivalently
by considering −log(·) element wise and implementing the
Bayes’ theorem as

x̂ = arg min
x

− log (P (y|x))− log (P (x)) , (7)

where f(x) = −log (P (y|x)) is the data fidelity term and
g(x) = −log (P (x)) stands for the log-prior term of the image
to estimate. With these notations, (7) can be written as:

x̂ = arg min
x

f(x) + g(x). (8)

The noise Poisson probability density function is defined as

P (y|x) =
∏
i

e−(Hx)[i](Hx)[i]
y[i]

y[i]!
, (9)

where (·)[i] represents the i-th component of a vectorized
image. Thus the data fidelity term f(x) reads as

f(x) = −yT log(Hx) + 1THx+ constant, (10)

where 1 is vector of length n2 with each element equal to 1.
B. Quantum adaptative transform

A few attempts of applying tools from quantum physics
to image processing can be found in the literature [26]–[30].
We focus hereafter on a specific application developed in
[24], [25], which uses quantum physics as a tool to obtain
an adaptative basis which can be efficiently used to denoise
an image. More specifically, we use the time-independent
Schroedinger equation

− ~2

2m
∇2ψ = −V (a)ψ + Eψ, (11)

which can be rewritten as an eigenvalue problem:

HQABψ = Eψ, (12)

where HQAB = − ~2

2m∇
2 + V is the Hamiltonian oper-

ator, whose resolution gives a set of stationary solutions
ψi associated with eigenvalues (energies) Ei, normalized by∫
|ψ(a)|2da = 1. In physics, V (a) is the potential where the

quantum particle moves. Herein, we define it as the pixels’
value. ~ representing the Planck constant and m the mass of
the particle in physics, are regrouped herein in a hyperparam-
eter ~2/2m. The solutions of (12) give oscillatory functions
similar to the Fourier basis, with two main properties: i) the
oscillation frequency increases with energy and ii) for the
same basis function, the oscillation frequency depends on
the pixels’ value. The precise way the oscillation frequency
depends on the pixels’ values is regulated by the parameter
~2/2m. It was shown in [24], [25] that thresholding the image
in this adaptative basis gives an efficient way to denoise it,
in particular in the presence of Gaussian, Poisson or speckle
noise.

For imaging applications, the equation (12) has to be
discretized. The corresponding Hamiltonian operator reads as:

HQAB[i, j] =


x[i] + 4 ~2

2m for i = j,

− ~2

2m for i = j ± 1,

− ~2

2m for i = j ± n,
0 otherwise,

(13)

where x ∈ IRn
2

is an image (i.e., V = x) and HQAB[i, j]
represents the (i, j)-th component of the operator HQAB ∈
IRn

2×n2

. Note that zero-padding is used to handle the bound-
ary conditions [24]. The set of n2 eigenvectors correspond-
ing to the Hamiltonian operator (13), which are primarily
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stationary wave solutions of (11), represents the adaptative
transform and is denoted as the quantum adaptative basis
(QAB) denoiser, DQAB(·), in the proposed algorithm.

In this context, the denoised image x̂ is retrieved by
computing the projection coefficients αi of the noisy image x
onto the QAB, followed by a soft-thresholding τi and finally
reverse projecting the refined coefficients, defined as:

x̂ =

n2∑
i=1

τiαiψi, (14)

with, τi =


1 for i ≤ s,

1− i−s
ρ for i > s and for 1− i−s

ρ > 0,

0 otherwise.
where s and ρ are two thresholding hyperparameters.

Fundamentally, as stated above, these eigenvectors ψi
(called wave vectors in quantum physics) are oscillatory func-
tions with an oscillation frequency typically proportional to the
local value of

√
2m(E − V )/~. Consequently, the same basis

vector probes low potential regions with higher frequencies
compared to a higher potential region. This adaptative nature
of the basis vectors of DQAB makes it very different from
the Fourier and wavelet bases. The precise dependence of the
local frequency on the pixels’ intensity can be tuned through
the value of the hyperparameter ~2/2m. As discussed in [24],
[25], the adaptative basis obtained from the raw noisy image is
localized due to a subtle effect of quantum interference [31]. In
order to obtain a basis with extended vectors, which has been
shown to be more efficient for denoising, one should compute
the basis from an image obtained by first performing low-pass
linear filtering with a Gaussian kernel of standard deviation
σQAB. This filtering is performed only to compute the most
relevant adaptative basis, which is then used to denoise the
original noisy image.
C. Design of the QAB-PnP algorithm

The deconvolution problem (8) can be addressed following
the ADMM scheme (2)-(4) with the parameterization: A =
−B = In2×n2 , c = 0n2 (In2×n2 is the identity matrix and
0n2 is a zero vector), giving at iteration k:

xk+1 = arg min
x

(
− yT log(Hx) + 1THx

+ (λk/2)
∥∥x− zk + uk∥∥2

2

)
(15)

zk+1 = arg min
z

(
g(z) + (λk/2)

∥∥xk+1 + uk − z
∥∥2
2

)
(16)

uk+1 = uk + xk+1 − zk+1. (17)

To accelerate the convergence, the penalty parameter λ is
multiplied at each step by a factor γ > 1 [18], instead of
using a fixed value, i.e., λk+1 = γλk. One may observe
that (16) can be associated with a denoising process. Several
denoisers have been used in the literature, such as Gaussian
denoisers combined or not with VST-like transforms. The main
contribution of this work is to use DQAB instead of classical
denoisers. Therefore while using the denoiser DQAB as PnP
denoiser, the step (16) becomes:

zk+1 = DQAB
(
xk+1 + uk

)
. (18)

The convex problem (15) does not have an analytic solution.
However, the gradient descent method [32] offers an iterative
way of solving it by calculating the gradient of the augmented
Lagrangian Lλ, given by

∇xLλ = −HT
(
y/(Hx)

)
+HT1+λk(x−zk+uk), (19)

where ∇x represents the derivative with respect to x and
y/(Hx) stands for element-wise division.

Algorithm 1: Modified OMP algorithm.
Input: v , T , DQAB

1 Initialization: r0 = v , Λ0 = ∅ , Φ0 is an empty matrix
2 for l from 0 to T − 1 do
3 l = l + 1
4 λl = arg max

j=1,2,...,T
|〈rl−1,ψj〉|, for ψj ∈ DQAB

(Break ties deterministically)
5 Λl = Λl−1

⋃
λl

6 Φl = [Φl−1 ψλl ]
7 al = arg min

a

∥∥v − Φla
∥∥

2

8 rl = v − Φlal

Output: α̂, which has nonzero elements only at Λl, i.e., α̂Λl = al

Algorithm 2: QAB denoising algorithm.
Input: z , DQAB , T , s , ρ

1 Compute the sparse coefficients α̂i with sparsity T by using the
measurement data z and the operator DQAB following Modified
OMP method as illustrated in the Algorithm 1

2 Threshold the coefficients α̂i
3 Compute ẑ following (14)

Output: ẑ

Algorithm 3: Proposed QAB-PnP algorithm.

Input: y , E , λ0 , γ , σQAB , ~2
2m

, N
1 Initialization: x0 , z0 , u0

2 Compute a smooth version of y passing through a Gaussian filter
with standard deviation σQAB

3 Form the Hamiltonian matrix HQAB based on the smoothed
version of y using (13)

4 Calculate the eigenvalues and eigenvectors of HQAB
5 Construct DQAB using the eigenvectors ψi of HQAB
6 Find total number of eigenvalue T , less than the energy level E
7 begin
8 ADMM process:
9 for k from 0 to N − 1 do

10 xk+1 = arg min
x

− yT log(Hx) + 1THx+

(λk/2)
∥∥x− zk + uk

∥∥2

2
11 zk+1 = DQAB(xk+1 + uk), following Algorithm 2
12 uk+1 = uk + xk+1 − zk+1

13 λk+1 = γλk

Output: x̂ = xN

In the proposed QAB-PnP algorithm, the denoising per-
formed by DQAB usually needs to execute the time-consuming
task of calculating all the coefficients αi, despite the fact
that very few coefficients actually participate in the restoration
process, due to the soft-thresholding procedure. To decrease
the computational load of the algorithm, it is convenient to
focus only on basis vectors which contribute most (their total
number will be denoted by T ) to DQAB. Since higher energy
levels are above the threshold, it is sufficient to consider wave
vectors up to an energy level E , where E acts as a free
hyperparameter.
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The orthogonal matching pursuit (OMP) algorithm [33]
gives an efficient way of computing the most significant coef-
ficients. It primarily aims at generating a sparse approximation
α̂i with sparsity level T of the corresponding coefficients αi.
Thus, OMP principally provides T non-zero coefficients α̂i
such that an image v is approximated as v ' DQABα̂i. To do
so, firstly the most correlated column vector ψi ∈ DQAB is
identified, followed by subtraction of its contribution and the
process is restarted after the subtraction to obtain the second
most important basis vector. The desired set of wave vectors
is achieved after T iterations. Note that in DQAB the basis
vectors are organized in the ascending order, so the first T
basis vectors are mostly correlated with v. Therefore, one can
restrict OMP to the subset formed by the first T vectors, as
illustrated in Algorithm 1. The estimated sparse coefficients
α̂i obtained from Algorithm 1 are then used in the proposed
QAB-PnP algorithm for image restoration. The Algorithms 2
and 3 summarize the whole process.

IV. NUMERICAL EXPERIMENTS AND RESULTS

A detailed survey about the performance of the proposed
QAB-PnP algorithm for Poisson image deconvolution is pre-
sented in this section through three simulations: one synthetic
image and two cropped versions of standard images. All the
images are distorted with a Gaussian blurring kernel h4×4σ

of size 4 × 4 and standard deviation σ = 3. The study
was conducted with three different Poisson noise levels cor-
responding to SNRs of 20, 15 and 10 dB. Note that the noise
was image-dependent Poisson distributed and that the SNRs
of the observations was computed a posteriori to emphasize
the amount of noise.

TABLE I
PSNR(DB)/SSIM (AVERAGE OVER 200 NOISE REALIZATIONS)

Sample Method Poisson Noise
SNR = 20dB SNR = 15dB SNR = 10dB

Synthetic

TV-ADMM 26.46±0.10 24.80±0.34 22.52±1.55
0.66±0.01 0.58±0.01 0.52±0.02

P4IP 23.90±1.37 20.91±2.18 18.96±3.34
0.74±0.06 0.59±0.11 0.48±0.18

QAB-PnP 29.86±0.12 27.18±0.43 24.23±1.34
0.92±0.00 0.86±0.01 0.74±0.03

Lena

TV-ADMM 27.37±0.31 24.52±0.65 19.97±1.32
0.74±0.01 0.66±0.01 0.52±0.02

P4IP 27.32±0.44 24.87±2.76 18.67±4.83
0.81±0.01 0.76±0.07 0.55±0.16

QAB-PnP 28.97±0.19 27.04±0.44 20.18±3.39
0.81±0.00 0.75±0.01 0.65±0.08

Fruits

TV-ADMM 20.51±0.38 19.02±0.23 17.54±0.93
0.57±0.01 0.55±0.01 0.51±0.01

P4IP 20.42±1.79 17.22±4.62 14.35±3.85
0.59±0.04 0.52±0.11 0.53±0.04

QAB-PnP 21.37±0.94 19.35±0.96 17.28±3.55
0.62±0.01 0.57±0.02 0.51±0.12

Poisson deconvolution is a widely studied field in the liter-
ature where PnP algorithms embedding a Gaussian denoiser
combined or not with a VST (e.g., BM3D) have shown
promising performance [15].The adaptative nature of our pro-
posed scheme, i.e., of the quantum denoiser to different noise
statistics, makes it well-adapted for the problem addressed and
does not require using any additional transformation in the
denoising step.

To illustrate the practical interest of the proposed algorithm,
we provide a comparison with a state-of-the-art PnP-ADMM
methods called P4IP in [15] and a standard total-variation-
based ADMM deconvolution algorithm adapted to Poisson
observations in [9], denoted hereafter by TV-ADMM. To
ensure fair quantitative assessment of the restored images,
the hyperparameters were tuned manually for all methods to
obtain the best peak signal to noise ratio (PSNR) and structure
similarity (SSIM) [34]. Table I summarizes the average and
standard deviation values for each set of experiments, obtained
for all methods with 200 different noise realizations. For each
set the best result is highlighted in bold. The quantitative
results confirm that the proposed PnP scheme not only gives
a better average value but also a smaller standard deviation
compared to P4IP, which highlights its good adaptability with
high as well as low SNR images. For qualitative analysis,
blurred Lena image observed through a Poisson process with
SNR equal to 10 dB, a blurred synthetic image observed
through a Poisson process with SNR 15 dB, and blurred fruits
image observed through a Poisson process with SNR 20 dB
are shown in Fig. 1.

To confirm the interest of considering OMP with hyper-
parameter E , Table II illustrates the average processing time
and the PSNR of the proposed algorithm with and without
OMP, i.e. with and without using the hyperparameter E for the
synthetic image. This reveals that the gain in computational
time is significant with very small accuracy loss. Finally, Fig.
2 shows the behavior of the proposed algorithm compared to
P4IP.

TABLE II
AVERAGE COMPUTATIONAL TIME AND PSNR (FOR SYNTHETIC IMAGE)

Simulation With OMP, best E Without OMP
Run time (sec) 40.575 214.394

PSNR (dB) 29.86 30.08

V. CONCLUSIONS

A new adaptable PnP scheme inspired by quantum mechan-
ical tools has been studied in this work to handle Poisson
inverse problems. The proposed algorithm uses a quantum
mechanics-based QAB denoiser, whose design makes it well-
adapted to different noise statistics, explaining its good behavi-
ous as denoiser embedded in a PnP-ADMM algorithm. The
numerical experiments reveal the potential of the proposed
algorithm in the Poisson deconvolution context, even in the
low SNR case, where VST-based models have very irregular
performances, as highlighted by the high standard deviation
values for P4IP algorithm in Table I.
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