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Abstract—Despite constantly evolving mobile hardware, real-
time person segmentation on mobile phones is challenging due
to the limited computational resources. To address this problem,
we introduce a novel UNet-like network architecture based on
MobileNetV3, which enables the segmentation of persons in
images and videos on mobile phones. Our model, which is not
limited to a specific shot type, outperforms specialized models in
their respective domains and runs with 35 fps on a Google Pixel 4
mobile phone. Moreover, we demonstrate how the segmentation
accuracy can be further improved by exploiting the temporal
coherence of consecutive frames in videos.

Index Terms—real time, person segmentation, mobile phone

I. INTRODUCTION

The segmentation of persons in images or videos captured
on mobile phones is a central task in many person-centric
mobile applications. Examples include background removal
or replacment [1], hair recoloring [2], virtual makeup [3],
hand gesture recognition [4] or portrait stylization [5].
Although current mobile phones feature powerful computing
hardware, the acquisition of high quality segmentation
masks in real time is still challenging. Without increasing
the computational resources, the only way to address this
problem is the development of efficient person segmentation
models that can cope with resource-constrained environments.
In search of such a model, we evaluate 5 state-of-the-art
network architectures with regard to their suitability for real-
time segmentation of persons on mobile phones. Relevant
components from candidate architectures are selected, new
network architectures are developed and corresponding person
segmentation models are trained and evaluated on both custom
and publicly available datasets. Based on this evaluation, we
propose a novel UNet-like network architecture that uses
MobileNetV3 building blocks. The resulting model achieves
state-of-the-art segmentation accuracy on portrait shots and
compares favorably to much larger models specialized in full
body shots, while not being limited to a specific shot type.
Moreover, the model achieves an average inference time of
27.9 ms (>35 fps) on a Google Pixel 4 mobile phone.

The remainder of this work is structured as follows. In

Section II, we discuss the state of the art regarding person
segmentation and mobile network architectures. In Section III,
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potential encoder architectures are compared and we propose
new network architectures for person segmentation on mobile
phones. The composition of our datasets and model training
is discussed in Section IV. Finally, quantitative and qualitative
evaluation results are given in Section V.

II. RELATED WORK

In recent years, network architectures and models for person
segmentation that focus on a specific shot type (e.g. portait
or full-body shot) have been proposed. In [6], Shen et al.
present their network architecture for portrait segmentation
called PortraitFCN+ and the EG1800 dataset, which is fre-
quently used for comparing portrait segmentation models. To
our knowledge, the best results on the EG1800 benchmark
to date are achieved by Wadhwa et al. [7]. PortraitNet [8],
which is a UNet-like [9] network architecture with a Mo-
bileNetV2 [10] backbone, achieves comparable results on
the same benchmark. Small portrait segmentation models
like SINet+ [11] and HLB [12] with less than one million
parameters achieve frame rates of over 30 fps on current
mobile phones, while sacrificing some accuracy. Even lower
latencies can be achieved with network architectures that are
specifically optimised for mobile environments. These include
the MobileNet family [15], ShuffleNet [16], GhostNet [17],
MNas-Net [18] or EfficientNet [19]. With inference times well
below 50 ms, these network architectures are ideal candidates
for the development of efficient person segmentation models
for mobile phones. In the context of person segmentation,
BowtieNet [14] should also be mentioned, which currently
achieves the highest segmentation accuracy on the Baidu
people segmentation dataset, consisting mainly of full body
images. With a framerate of 39 fps on an Nvidia Titan X
GPU, this model is not suitable for mobile environments, but
we can still compare its segmentation accuracy to that of our
own models.

III. NETWORK ARCHITECTURE

The proposed network architecture follows the encoder-
decoder principle that was popularized by UNet [9] and has
since been proven effective for various segmentation problems
[20]. The encoder-decoder architecture consist of two stages,
a contracting path (encoder) and an expanding path (decoder).
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TABLE I
PERFORMANCE METRICS OF POTENTIAL ENCODER ARCHITECTURES.
*INFERENCE TIME ON GOOGLE PIXEL 4 (4 CPU CORES)

Network Architecture | params | top-1 | ms* S

MobileNetV3 large 5.4M 75.2 32 0.66
MobileNetV3 small 2.5M 67.4 13 0.67
ShuffleNetV2 1.0x 2.3M 69.4 17 0.68
ShuffleNetV2 0.5x 1.4M 60.3 10 0.50
MnasNet-A1l 3.9M 75.2 40 0.55
EfficientNet-BO 5.3M 71.3 49 0.50
EfficientNet-Lite0 4M 75.1 45 0.49
GhostNet 1.0 52M 73.9 33 0.61
GhostNet 0.5 2.6M 66.2 21 0.53

The encoder extracts feature maps of decreasing size through
consecutive convolution and pooling operations up to a suffi-
ciently small feature map resolution. The decoder then brings
the output of the encoder back to the original input resolution
by concatenating encoder and decoder feature maps via skip
connections and repeatedly applying transposed convolutions
(or a combination of interpolation and convolution operations).
Because encoder and decoder are, apart from skip connections,
self-contained components that can be exchanged, the encoder-
decoder architecture is an ideal evaluation platform.

Encoders for mobile phones have to cope with prevailing
limitations regarding memory capacity and processing power,
while still being able to run in real time. State-of-the-art
encoder architectures, as listed in Table I, achieve this by using
efficient convolution blocks. In order to select potential en-
coders for our own network architecture, encoders are ranked
according to their top-1 ImageNet classification accuracies and
their average inference times on a Google Pixel 4 mobile
phone. From these two measurements, the efﬁcierELscore
S € [0,1] is calculated as in Equation 1, where top-1 and
ms are the top-1 classification accuracies and inference times,
given in Table I, rescaled to [0, 1].

S = (fop-1+ (1 — ms)) *0.5 (1)

As given in Table I, the three top performing encoder
architectures, with respect to S, are ShuffleNetV2 1.0x, Mo-
bileNetV3 large and MobileNetV3 small, with values of 0.68,
0.67 and 0.66, respectively. Since both MobileNetV3 variants
share the same encoder architecture, we also include GhostNet
1.0, achieving an efficiency score of 0.61, in our evaluation.

To carry the efficiency of the encoders over to the full
network architecture, we use their respective characteristic bot-
tleneck blocks to build a matching decoder. These are inverted
residual blocks with squeeze-and-exitation (MobileNetV3),
ShuffleNetV2 units, and Ghost bottlenecks (GhostNet). En-
coder feature maps are concatenated with decoder feature
maps of the same level via skip connections, fed to the bottle-
neck block and up-scaled bilinearly to match the resolution of
the skip connection in the subsequent level. By using bilinear
interpolation instead of transposed convolution, we avoid
checkerboard artifacts and keep the number of parameters of
the decoder low. Furthermore, because convolutions on small
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Fig. 1. Generalized network architecture, showing the encoder-decoder-
structure and the use of the characteristic bottleneck blocks in the decoder.

feature maps are cheaper and bilinear interpolations do not
add new information, we place the bilinear interpolations after
the bottleneck blocks. The generalized network architecture,
upon which all our person segmentation network architectures
are built, is visualized in Figure 1, which shows the encoder-
decoder structure and the placement of the characteristic
bottleneck blocks in the decoder. A detailed description of
the network architectures presented can be found in the sup-
plementary material'. Four person segmentation models are
trained and evaluated, called MobSegS, MobSegL., ShuSegL.,
and GhoSegL in the following. The naming convention is
based on the different encoders, which are MobileNetV3 small,
MobileNetV3 large, ShuffleNetV2 1.0x and GhostNet 1.0
respectively.

IV. DATA AND TRAINING

Both image and video data were considered for training
our person segmentation models. However, the availability of
suitable video datasets with dense annotation and sufficient
image quality is limited [21]. For this reason, we decide to
train on image-mask pairs exclusively, as there is an abundance
of such data available online. For the evaluation, however, both
image and video datasets are utilized. Links to all the datasets
used are given in Table VI.

A. Data

We construct a dataset from eight image collections con-
taining people in different poses and environments. Besides
semantic segmentation, they stem from domains such as nat-
ural image matting, human parsing, or pose estimation. Apart
from portrait shots, half and full body shots are included as
well, which facilitates the generalization to a wide spectrum of
shot types. A complete list of datasets used, with the respective
number of images and contained shot types, is given in Table
II. The combined image dataset contains a total of 84,826
image-mask pairs, composed of portrait, full body and other
shots with a ratio of 2:2:1.

B. Video Data

In addition to single image inference, we exploit the tempo-
ral coherence of consecutive frames. For this, the generalized
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TABLE II
LIST OF IMAGE DATASETS USED, WITH THE NUMBER OF IMAGES AND THE
CONTAINED SHOT TYPES PORTRAIT (P), HALF-BODY (HB), AND
FULL-BODY (FB).

Dataset Images | Shot Types
Human Matting Dataset 34,426 P
Baidu People Segmentation 5,387 FB
Dark Complexion Portrait Segmentation 12,165 P, HB, FB
ICCV15 Human Parsing Dataset [22], [23] 17,706 FB
UTP - Leeds Sports Pose [24] 2,000 FB
UTP - Leeds Sports Pose Ext. [24] 8,642 FB
PicsArt Hackathon Dataset 2,500 P, HB, FB
Deep Automatic Portrait Matting [25] 2,000 P
Total 84,826

TABLE III
LIST OF VIDEO DATASETS USED, WITH THE CORRESPONDING NUMBER OF
FRAMES, NUMBER OF MASKS AND THE ANNOTATION TYPE.

Dataset Frames | Masks | Annotation Type
SegTrack v2 [26] 53 53 dense
DAVIS 2017 [27] 762 762 dense
LASIESTA [28] 1,794 1,794 dense
VSB100 [29] 525 66 sparse
A2D [30] 2,584 T4 sparse
Total 5,718 2,749

network architecture is modified, such that it accepts an
additional fourth input channel, being the predicted mask of
the previous frame. It has been shown that this modification
can improve the segmentation quality on videos [2]. For
comparing the standard models with three input channels
(RGB) to the described temporal model, annotated videos are
required, which are sourced from the five publicly available
video datasets listed in Table III. From these datasets, videos
containing people are selected (e.g. DAVIS 2017 parkour). The
resulting video test dataset contains 50 different videos with
2,749 annotated frames.

C. Model Training

To prepare training, validation and test datasets, the 84,826
images are split in a 8:1:1 ratio. We use the Adam optimizer
(Ir=0.01), Binary-Cross-Entropy (BCE) loss, a batch size of
4 and train for 150 epochs. RGB images are re-scaled to
224x224 and normalized using channel means and standard
deviations, derived from the training dataset. Data augmenta-
tions, such as random translations (40.1h, £0.1w), rotations
(£10°), and scaling (+0.1h, +0.1w) operations, are applied
to RGB image and mask (h and w are image height and width
in pixels, respectively).

Apart from the four models that receive RGB images as
input (MobSegS, MobSegL, ShuSegL. and GhoSegL.), we train
a second version of MobSegS, called MobSegS+, which is the
aforementioned temporal model that takes the previous mask
as additional input. As we train on image-mask pairs, we do
not have access to this mask. However, it can be simulated
by applying transformations to the ground truth mask of the
current frame, as described in [2]. For this, random translations
(£0.15h, £0.15w), rotations (£5°), scaling (£0.2h, +0.2w),

(a) IoU

(b) boundary (c) rloU

Fig. 2. Visual comparison between IoU and rloU, with TP pixels highlighted
in green and FP and FN pixels in red. (a) Shows the standard IoU, (b) the
extraction of the boundary region by shrinking and expanding the ground truth
mask (grey) and (c) rloU.

and shearing (£5°) operations are applied after the initial
augmentations. Furthermore, we randomly pass an empty
previous mask in 75% of cases, which trains the model for
first-frame inference where no previous mask is available.

V. EVALUATION

To evaluate the models, we collect both quantitative and
qualitative data from the image and video test datasets.
Performance metrics for MobSegS, MobSegL, ShuSegl. and
GhoSegL. on the image test dataset are derived and we com-
pare the performance of MobSegS and the temporal model
MobSegS+ on the video test dataset to assess whether the
exploitation of temporal coherence is beneficial.

A. Metrics

The performance of a segmentation model is determined by
measuring the similarity or dissimilarity between the predicted
segmentation mask and the corresponding ground truth mask.
Standard metrics, such as segmentation accuracy (ACC), in-
tersection over union (IoU), and the Sgrensen-Dice coefficient
(Dice), which we use in accordance with scientific literature,
facilitate this.

Additionally, we introduce the regional intersection over
union (rloU) metric, which, as opposed to global metrics,
allows one to place a stronger emphasis on segmentation errors
in the border region between foreground and background.
If the foreground occupies the majority of the image, as is
the case with portraits, for example, these errors are difficult
to detect with global metrics such as IoU because their
contribution to the total error is so small. We compute rloU
as the IoU of the border region between foreground and
background. For this, independent morphological opening and
closing operations are applied to the binary ground truth mask.
This yields enlarged and shrunken versions, which represent
the inner and outer borders of the boundary region, as given
in Figure 2 (c). The binary mask of the border region is
then acquired by subtracting the shrunken from the enlarged
mask. Finally, all pixels that fall within the border region are
extracted and taken into account for the IoU computation,
which results in the rloU. The difference between IoU and
rloU is visualized in Figure 2 (a)(c), which shows the global
scope of IoU and the local scope of rloU.
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TABLE IV
PERFORMANCE METRICS FOR THE IMAGE TEST DATASET. *INFERENCE
TIME ON GOOGLE PIXEL 4 (4 CPU CORES) FOR 224X224 INPUT IMAGES.

Model ACC | Dice | IoU | rloU | params | ms*

MobSegL | 98.6 | 97.0 | 94.6 | 86.4 7.2M S51.4

MobSegS | 983 | 963 | 93.5 | 84.3 24M | 279

ShuSegL 983 | 962 | 935 | 84.9 2.6M 37.2

GhoSegL. | 98.6 | 96.9 | 945 | 86.3 59M | 482
TABLE V

COMPARISON WITH STATE-OF-THE-ART PORTRAIT AND FULL-BODY
SEGMENTATION MODELS. IoU IS MEASURED ON THE EG1800 (PORTRAIT)
AND BAIDU PEOPLE SEGMENTATION (FULL-BODY) DATASET.
*REAL-TIME PERFORMANCE (>30 FPS) ON A GOOGLE PIXEL 4 MOBILE

PHONE.
Model (portrait) IoU | rt* | Model (full-body) ToU | rt*
HLB [12] 949 | v | DLV2-VGG [14] 91.6 X
SINet+ [11] 953 | v | DLV2-ResNet [14] | 92.7 X
PortraitNet [8] 96.6 | v | DLV3+ [14] 92.8 X
Wadhwa et al. [7] | 97.7 v BowtieNet [14] 93.6 X
MobSegS (ours) 974 | v | MobSegS (ours) 916 | v

B. Results

The performance metrics on the image test dataset are given
in Table IV. We observe that the largest model MobSegL
outperforms the other models across all metrics, while hav-
ing the highest inference time. However, when segmenting
fast-moving persons, the advantage of a higher frame rate
outweighs the advantage of a slightly better segmentation
accuracy as soon as the mask lags behind visibly. Furthermore,
the perceived segmentation quality is similar across all models.
For this reason, we favor models with a small inference time
over slower but more accurate models. Regarding accuracy,
MobSegS and ShuSegL. show similar performance. However,
MobSegS is the only model to meet the real-time requirement
of 30 fps. From this, we conclude that MobSegS is best
suited for person segmentation on mobile phones out of
all the models evaluated. Qualitative segmentation results of
MobSegS are given in Figure 3, which show the consistent
segmentation quality across different shot types. Moreover, we
can observe that the model is invariant to rotations, as shown
by the backflip example.

Despite being trained for general purpose person segmen-
tation, MobSegS still compares favorably to state-of-the-art
segmentation models that focus on a particular shot type,
as given in Table V. On the EG1800 dataset [6], MobSegS
(97.4% 1oU) is second to the model proposed by Wadhwa et
al. [7] by only 0.26% IoU. To our knowledge, this is the most
accurate real-time portrait segmentation model to date and we
achieve comparable performance with one tenth of the training
data. Furthermore, MobSegS beats PortraitNet [8] (96.6% IoU)
and outperforms compact portrait segmentation models, such
as SINet+ [11] (95.3% IoU) and HLB [12] (94.9% IoU),
while still operating at more than 30 fps on a Pixel 4 mobile
phone. The same holds true for the segmentation of full body
shots. In [14], Zhao et al. compare their BowtieNet model to

MobSegS

Fig. 3. Qualitative comparison between MobSegS prediction and ground truth
for a portrait, half body and full body shot example from the Human Matting
Dataset, Baidu People Segmentation Dataset and Leeds Sports Pose Dataset,
respectively.

several other segmentation models based on their performance
on the Baidu People Segmentation Dataset. Moreover, Mob-
SegS (91.6% IoU) outperforms much larger models, such as
DeepLabV2-VGG [14] (91.6% IoU). While BowtieNet is more
accurate (93.4% IoU), it processes images of size 256x256 at
only 39.1 fps on an Nvidia Titan X GPU. In our experiments,
MobSegS achieves speeds beyond 110 fps for images of size
224x224 on the same hardware, which makes it more suitable
for use on mobile phones.

To evaluate how the incorporation of additional temporal
information affects segmentation accuracy, we compare the
performance of MobSegS and MobSegS+ on the video test
dataset. Here, MobSegS achieves 75.7% IoU and 70.4% rloU.
MobSegS+ achieves 77.7% IoU and 72.9% rloU, which is
an improvement of 2.0% and 2.5%, respectively. Due to the
additional input channel we lose 3.5 fps, which brings the
frame rate down to 32.3 fps. The real-time requirement of 30
fps is still exceeded, however. From this we conclude that the
incorporation of temporal information improves segmentation
accuracy while real-time frame-rates are still achieved.

VI. CONCLUSION

In this work, we have developed and evaluated four efficient
network architectures for real-time person segmentation on
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mobile phones. From this, a MobileNetV3-based model, Mob-
SegS, emerged which achieved state-of-the-art segmentation
accuracy in the EG1800 portrait segmentation benchmark and
could compete with much larger models for full-body seg-
mentation in the Baidu segmentation challenge without being
limited to a specific shot type. Moreover, experiments with
MobSegS+ demonstrated that by adding temporal information,
one can further improve the segmentation accuracy by 2% IoU.
With frame rates of 35.8 fps and 32.3 fps, respectively, on a
Google Pixel 4 mobile phone, both MobSegS and MobSegS+
are well suited for mobile applications, relying on real-time
person segmentation in images or videos.
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APPENDIX

TABLE VI
DATASETS AND SUPPLEMENTARY MATERIAL.

Dataset

URL (Accesssed: 7.12.2020)

HMD

https://github.com/aisegmentcn/matting_human_datasets

BPS

http://www.cbsr.ia.ac.cn/users/ynyu/dataset

DCPS

https://competitions.codalab.org/competitions/24206

HPD

https://github.com/lemondan/HumanParsing-Dataset

UTP LSP

http://files.is.tuebingen.mpg.de/classner/up

UTPLSP ext.

http://files.is.tuebingen.mpg.de/classner/up

PHD

https://github.com/gasparian/Pics ArtHack-binary-segm
entation

DAPM

http://www.cse.cuhk.edu.hk/~leojia/projects/automatting

SegTrackV2

http://web.engr.oregonstate.edu/~1if/SegTrack2/dataset

DAVIS 2017

https://davischallenge.org/davis2017/code.html

LASIESTA

https://www.gti.ssr.upm.es/data/lasiesta_database.html

VSB100

https://www.mpi-inf.mpg.de/departments/computer-visi
on-and-machine-learning/research/video-segmentation

A2D

https://web.eecs.umich.edu/~jjcorso/r/a2d

supp. mat.!

https://cvl.tuwien.ac.at/uncategorized/seg2021/
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