
 

Learning Based Superpixel Merging Model for 
Image Segmentation 

 
Jin-Yu Huang 

Graduate Inst. Communication Engineering 
National Taiwan University 

Taipei, Taiwan 
r07942085@ntu.edu.tw 

 

Jian-Jiun Ding 
Graduate Inst. Communication Engineering 

National Taiwan University 
Taipei, Taiwan 

jjding@ntu.edu.tw 
 

Pei-Chi Huang 
Graduate Inst. Communication Engineering 

National Taiwan University 
Taipei, Taiwan 

p08942a07@ntu.edu.tw 
 

Abstract—Most conventional segmentation methods are 
superpixel-based. Recently, the convolutional network (CNN) has 
been adopted in image segmentation. However, most existing 
CNN-based segmentation algorithms are pixel-wise. Due to the 
irregular shape and the non-fixed size of superpixels, it is hard to 
apply superpixels into the CNN architecture directly. In this work, 
several ideas are proposed to solve this problem. Instead of 
applying the whole image as the input directly, we apply a square 
patch that contains only two superpixels as the input of the CNN. 
Also, instead of generating the segmentation result directly, the 
output of the CNN is whether the two superpixels should be 
merged. The proposed algorithm integrates the merits of 
conventional superpixel-based methods, feature-based methods, 
and CNN-based methods. Simulations show that the proposed 
algorithm can achieve very high accurate segmentation results and 
outperform state-of-the-art methods in all metrics.  

Keywords—Superpixel merging, image segmentation, deep 
learning, computer vision 

I. INTRODUCTION  

Image segmentation is crucial for many image processing 
applications. There are many existing image segmentation 
algorithms, including region growing [1], mean shift [2], the 
watershed [3], the normalized cut [4], the graph-based method 
[5], and superpixel-based methods [6-8]. 

In recent years, deep learning techniques have been adopted 
in image segmentation [9-12]. With sophisticated deep learning 
architectures, one can achieve good segmentation results with 
enough training time. However, these learning-based algorithms 
are pixel-wise methods. Before learning-based segmentation 
algorithms were developed, many advanced image 
segmentation algorithms are based on superpixels. However, 
due to the irregularity of sizes and shapes of superpixels, it is 
hard to apply superpixels in a learning-based segmentation 
architecture.  

In this paper, a novel superpixel-based image segmentation 
algorithm based on deep neural networks is proposed. Classical 
superpixel-based algorithms [6-8] utilized several rules to 
determine whether two superpixels should be merged. In this 
paper, instead of applying these grouping rules, deep neural 
networks are applied to decide whether two superpixels should 
be merged. Different from other learning-based algorithms, 
instead of applying the whole image as the input, we apply the 
patch containing only two superpixels as the input of the deep 
neural network. Moreover, instead of outputting the 
segmentation result directly, the output of the network in the 

proposed algorithm is a label to indicate whether two 
superpixels should be merged.  

Fig. 1 shows the overview of the proposed method. Initially, 
an image is divided into superpixels. Then, learning-based 
merging models are applied to combine superpixels and obtain 
the segmentation result. Its detail will be illustrated in Section II.  

The source code of the proposed algorithm can be 
downloaded from [13]. 

II. PROPOSED ALGORITHM  

In this section, we illustrate the architecture of the proposed 
algorithm in detail. It consists of three parts: (i) two-superpixel 
patch generation; (ii) the training architecture; (iii) superpixel 
pairing and the merging procedure.  

Different from other learning-based methods, which take 
the whole image as the input and output the segmentation result 
directly, in the proposed algorithm, the input and the output of 
the deep neural network are 

- Input: A patch containing only two adjacent superpixels, as 
the two-label patch in Fig. 2.          

- Output: A label to indicate whether the two superpixels should 
be merged.   

That is, we convert an image segmentation problem into a 
classification problem with only two labels: whether two 
superpixels ‘should’ or ‘should not’ be merged. Moreover, 
since every image contains many superpixel pairs, huge amount 
of training data can be acquired.   

A. Two-Superpixel Patch Generation 

To ensure the robustness of the deep learning model, we 
apply the following two rules to extract two-superpixel patches: 

1. The patch should contain only two adjacent superpixels. 

2. If the two superpixels do not fill the whole patch, as in the 
bottom right part of Fig. 1, the image inpainting technique is 
applied to pad the blank region. 

Fig. 1 shows the flowchart of the two-superpixel patch 
extraction process and some examples of the extracted two-
superpixel patches are shown in Fig. 2.  

 First, we apply superpixel generation algorithms to acquire 
the initial over-segmented image. In the training set, to increase 
the diversity of two-superpixel patches, three different methods
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Fig. 1. Flowchart of generating two-superpixel patches. 

 

 
Fig. 2. Examples of extracted two-superpixel patches. The subfigures in the 
upper row are the two-superpixel patches labeled “not to be merged” and those 
in the lower row are the two-superpixel patches labeled “to be merged”. The red 
curves are the boundaries between the two superpixels and the white lines are 
the borders of superpixels. 
 
for superpixel generation are applied, including the mean-shift 
algorithm [2] and deep-learning-based superpixel algorithms 
like the SEAL [14] and the SSN [15]. Furthermore, by varying 
the numbers of superpixel in the SEAL and the SSN, one can 
obtain multi-scaled superpixels. 

Note that each two-superpixel patch is treated as a training 
data. Since there are many superpixel pairs within an image, 
huge amount of training data can be acquired even if there are 
limited number of training images. 

Then, two-superpixel patches are trimmed to follow the two 
rules defined at the beginning of this subsection. After applying 
a bounding box to capture two adjacent superpixels, the anchor 
point, the width, and the length of the bounding box are recorded. 
As mentioned in the first rule, the bounding box should cover 
only two superpixels. Therefore, we choose the middle point on 
the boundary between the two superpixels as the anchor point. 

Then, we find the centroids of two superpixels and calculate 
the Euclidean distances between the two centroids and the 
anchor point. The smaller distance is denoted by d. Since better 
performance can be achieved if the areas of the two superpixels 
are roughly equal, the width and the length of the bounding box 
are both set to 2d. This can ensure that the areas of two 
superpixels within the bounding box are almost the same.   

After generating the bounding box, it is inevitable that there 
are some pixels within the bounding box that do not belong to 
the two superpixels. To perform blank space padding, the 
naive solutions like padding with zeros or padding with the 
mean value will cause discontinuities and artifact edges, which 
violate the second rule. In this paper, we apply the technique 
called inpainting [18] to fill the blank regions by solving the 
following Laplace equation with two independent variables:       
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Given a region R, the Dirichlet problem tries to find the solution 
where the harmonic function φ equals to a function on the 
boundary of R. Thus, φ is dominated by the boundaries. In digital 
images, we can approximate the 2nd order partial differentiations 
in (1) by the following central difference operations:    
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If ∆x and ∆y are set to 1, the discretized form of the Laplace 
equation can be rearranged as follows:            

            , 1, 1, , 1 , 14 0i j i j i j i j i ju u u u u         .          (3) 

For pixel (i, j) in an image of each channel, ui,j represents the 
color intensity of the pixel. The color intensities of the pixels 
surrounding the blank space are treated as the Dirichlet 
boundary condition. After performing inpainting by (1)-(3) 
together with the Dirichlet boundary condition, the blank 
regions are filled with the values come from the original 
superpixels. Furthermore, this will not generate artifact edges 
around the borders of the blank spaces. 

With all the procedures described above, 710,000 two-
superpixel patches can be extracted from 300 training and 
validation images in the BSDS500 dataset. Examples of the two-
superpixel patches after padding are shown in Fig. 2. 

B. Training Strategy 

To achieve an even better segmentation result, we developed 
a two-stage superpixel merging process. We train two deep 
models with different amount of data. One applies balanced 
labeled data, that is, the numbers of training two-superpixel 
patches in two classes are roughly the same. The other one uses 
unbalanced labeled data and the two-superpixel patches labeled 
by “to be merged” is few times more than those labeled by “not 
to be merged”. As a result, the first model performs merging 
cautiously to avoid over-merging. Then, the second model is 
adopted to obtain the final segmentation results. 

C. Superpixel Pairing 

To ensure that the segmentation result is edge-preserving, we 
apply some criteria to sift the superpixel pair that are impossible 
to be merged. These criterions are described as follows.  
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Fig. 3.  Flowchart of the learning-based merging procedure. 

 
The ContourRate is to indicate the percentage of pixels on 

boundary of two adjacent superpixels that have high responses 
for edge detection. If the ContourRate is high, it means that the 
boundary of the two adjacent superpixels may be the edge of 
some object and one should avoid merging the two superpixels. 
We apply the RefineContourNet (RCN) algorithm proposed by 
Kelm et al. [16] to generate the edge map of the input image and 
threshold it to get a binary contour map. Then, the ContourRate 
is defined as:   

# ( ( , ) )
( , )

# ( , )

of pixels of long contours Bnd i j
ContourRate i j

of pixels of Bnd i j


  (4) 

where long contours are the contour on the edge map with larger 
length and Bnd(i, j) is the boundary between two adjacent 
superpixels i and j.   

Moreover, in image segmentation, texture is one of the 
commonly used feature to compare the similarity between two 
regions. Smaller texture difference means that two regions are 
similar. Therefore, the Log-Gabor filter [17] is used to extract 
texture features:  
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Usually, two scales and four orientations are used to extract total 
of 8 texture images by changing the values of σ and φ. The 
difference of the texture is determined from:  
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            (6) 

where Tk(i) and Tk(j) are the means of the kth textures of adjacent 
superpixels i and j, respectively.    

To avoid merging two superpixels that are connected by only 
a few pixels, we introduced the ContactRate:     

             # ( , )
( , )

min( ( ), ( ))

of pixels of Bnd i j
ContactRate i j

BL i BL j
       (7) 

where BL(i) means the perimeter of superpixel i. 

Moreover, traditional features like the area of regions and the 
color difference are also adopted. In the first stage, the criteria 
of the ContourRate, the ContactRate, and the area are applied 
with fixed thresholds, whereas in the second stage the 
ContourRate, dTex in (6), the ContactRate, the area, and the 
color difference are applied with adaptive thresholding. 

After training the superpixel merging model, image 
segmentation is performed. As described in Section II-B, we 
apply a two-stage merging procedure. The initial superpixels are 
fed into Model 1. It aims to merge the adjacent superpixel pairs 
selected by the criteria in this section. Then, the output is fed 
into Model 2. It performs superpixel merging using adaptive 
criteria. The overview of merging procedure is shown in Fig. 3. 

We call the proposed image segmentation algorithm the deep 
merging model for superpixel-based segmentation (DMMSS).  

III. EXPERIMENTS 

We evaluate the proposed DMMSS algorithm on the popular 
Berkeley Segmentation Dataset 500, which consists of 500 color 
images. We split it into 200 test images, 200 training images, 
and 100 validation images. We extracted two-superpixel pairs 
on the 300 training and validation images and used them for 
training the network.  

In the proposed architecture, the deep learning model of the 
ResNet101 [18] is adopted with the last fully-connected layer 
replaced by a layer two possible outputs. We used a pre-trained 
model on the ImageNet and fine-tuned the networks using mini-
batches of 700 images with the initial learning rate of 0.0001. 
The learning rate was divided by 2 every 10 epochs and the 
training process stopped after 80 epochs. The binary cross 
entropy loss was used as the objective function and the Adam 
optimizer was adopted. A dropout layer with probability 0.5 was 
added to the networks to prevent overfitting during the training 
phase. Moreover, we adopted the early-stopping technique with 
validation the patience set to 400 iterations.   

The source code of the proposed algorithm can be 
downloaded from the link in [13].             

A. Performance Comparison 

To compare the proposed DMMSS algorithm to existing 
methods, we evaluated the performance on the standard metrics 
of segmentation covering (SC) [19], the probabilistic rand index 
(PRI) [20], and the variation of information (VI) [21]. Higher 
SC and PRI values and a lower VI value mean better 
performance.   

We compared the proposed algorithm to the state-of-the-art 
methods, including the methods of the W-Net [12], gPb-owt-
ucm [3], DC-Seg-full [22], Taylor [23], Felzenszwalb and 
Huttenlocher (Felz-Hutt) [5], Mean Shift [2], Canny-owt-ucm 
[3], Normalized Cuts (NCuts) [4], fPb-owt-ucm [6], and cPb-
owtucm [6].  
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TABLE I. COMPARISON FOR SEGMENTATION RESULTS. 

Method  SC  PRI  VI 

Ncuts  0.45  0.78  2.23 

Canny-owt-ucm  0.49  0.79  2.19 

Felz-Hutt  0.52  0.80  2.21 

Mean Shift  0.54  0.79  1.85 

Taylor  0.56  0.81  1.78 

W-Net  0.57  0.81  1.76 

fPb-owt-ucm  0.58  0.82  1.70 

DC-Seg-full  0.59  0.82  1.68 

W-Net+ucm  0.59  0.82  1.67 

gPb-owt-ucm  0.59  0.83  1.69 

cPb-owt-ucm  0.59  0.83  1.65 

Proposed DMMSS(SEAL) 0.62 0.85 1.50 

Proposed DMMSS(MS) 0.63 0.85 1.51 

Proposed DMMSS(SSN)  0.63 0.86 1.46 

Human Drawing 0.72 0.88 1.17 

 
Table I shows the performance of the proposed DMMSS 

approach on the BSDS500 dataset. As the proposed algorithm, 
all the algorithms compared in Table I have not to assign the 
number of regions in prior. 

From Table I, one can see that the performance of our 
proposed method is much better than that of state-of-the-art 
algorithms. One of the significant advantages of the proposed 
DMMSS algorithm is that it does not require lots of annotated 
training images to train a model. Compared to other learning 
based methods like the W-Net, which was trained on the 
PASCAL VOC2012 dataset that contains 11,530 images and 
6,929 segmentations, better results can be achieved by the 
proposed DMMSS algorithm with almost 35 times fewer 
training images. About the computation time, when the 
superpixels of SEAL-ERS 100 is applied, the computation time 
of the proposed algorithm, DC-seg full, and gPb-owt-ucm are 
15, 59, and 100 seconds, respectively.  

Fig. 4 shows the segmentation results from the classical gPb-
owt-ucm algorithm [3] and the proposed DMMSS algorithm. On 
can see that the proposed method can effectively merge 
background regions. These regions that are usually difficult to 
be merged using existing methods but can be successfully 
merged by the proposed r method. For example, in the 5th 
column, for the two people walking on the beach, the proposed 
algorithm can produce a segment that cover the whole person 
while gPb-owt-ucm produced a fragmentary result. 

In Fig. 5, we show another visual comparison of the 
proposed DMMSS algorithm to DC-Seg-full [20], which is a 
famous learning-based method. Compare to the results of DC-
Seg-full, the proposed method can produce more compact and 
reliable segmentation. 

B. Ablation Study for Different Contour Map 

In the proposed architecture, the RCN [16] is applied as the 
contour map, which plays an important role in the superpixel 
pairing procedure of Section II-C. The contour map highly  

 
Fig. 4. Comparing the segmentation results. (Top) input images; (Middle) by 
gPb-owt-ucm [3]; (Bottom) by the proposed algorithms. 
 

 
Fig. 5. Comparing the segmentation results. (Top) input images; (Middle) by 
DC-Seg-full [20]; (Bottom) by the proposed algorithms. 
 

 
Fig. 6. Results of the proposed DMMSS algorithm using different superpixels. 
(1st row): original images; (Other rows): segmentation results produced by the 
proposed DMMSS algorithm using the superpixels generated by (2nd row): Mean-
Shift; (3rd row): SEAL; (4th row): Superpixel Sampling Network (SSN). 
 

TABLE II.  RESULTS OF DIFFERENT CONTOUR/EDGE DETECTION. 
Detection Method SC PRI VI

Structure Edge 0.61 0.85 1.58
UCM 0.62 0.84 1.56
RCN 0.63 0.86 1.46

 
TABLE III.  Results of Different Depth in the CNN. 

Detection Method SC PRI VI
ResNet18 0.58 0.84 1.72 
ResNet50 0.57 0.84 1.71 
ResNet101 0.63 0.86 1.46
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affects the performance of image segmentation because 
vanishing of the contour might cripple the criterion, causing 
regions to be join undesirably. In this subsection, we further 
study the impact of different contour/edge detection algorithms 
on the proposed algorithm. In Table II, we reported the results 
that utilizing the classical contour detection of UCM [3] and the 
structure edge detector [24] instead of the RCN for contour map 
generation. As one can see, better segmentation results can be 
achieved if the RCN is adopted for contour map generation. 

C. Ablation Study for Different CNN Architecture 

We mainly implemented the proposed DMMSS algorithm 
by the ResNet [18] architecture. There are various versions of 
the ResNet with different numbers of layers within the networks. 
Therefore, we tested the proposed algorithms on the ResNet18, 
the ResNet50, the ResNet101 and showed the results in the right 
part of Table III. The results show that using ResNet101 can 
achieve the best performance. 

D. Using Different Superpixels 

In Table I, three different kinds of superpixels are adopted 
(SEAL [14], MS [2], and SSN [15] superpixels). Two of them 
(SEAL and SSN superpixels) are deep learning-based and 
adjustable to the number of superpixels.   

In Fig. 6, we present the simulations that apply the proposed 
DMMSS algorithm to merge the superpixels generated from 
different algorithms. The results in Table I and Fig. 6 show that, 
no matter which type of superpixels is applied, with the 
proposed DMMSS algorithm, very high-quality segmentation 
results can be achieved. 

IV. CONCLUSION 

A novel image segmentation algorithm, DMMSS, that 
applies both deep learning architectures and superpixels was 
proposed in this work. The proposed algorithm converted the 
image segmentation problem into a series of decision problems 
about whether two adjacent superpixels should be merged or not. 
Since in the proposed algorithm the input of the network is a pair 
of adjacent superpixels and there are many adjacent superpixel 
pairs within an image, one can acquire huge amount of data to 
train the network and obtain highly accurate segmentation 
results. Experimental results showed that the proposed DMMSS 
algorithm outperforms state-of-the-art image segmentation 
techniques, including both learning-based and rule-based 
algorithms. Moreover, the proposed DMMSS algorithm is fully 
automatic and the number of regions has not to be assigned in 
prior.  
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