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Abstract—Maximum-a-posteriori (MAP) methods, while being
a standard choice for many estimation problems, have been
considered problematic for blind image deblurring: They have
been suspected of preferring blurry images to sharp ones.
Alternative methods without this apparent defect have been
proposed instead. Reservations about MAP methods for blind
image deblurring persist even as their close relation to these
alternatives has become evident.

We revisit the literature on this topic and argue that the
original rejection of MAP methods was ill-founded. We show that
the MAP approach can prefer sharp images over blurry ones.
Furthermore, we show experimentally that the MAP approach
can in principle achieve deblurring results that are competitive
with the allegedly superior methods. We thereby challenge some
traditional notions of the relevant causes underlying successful
blind deblurring to obtain a more accurate understanding of
the blind image deblurring problem.

Index Terms—Blind image deblurring, MAP, sparsity,
smoothed NUV, iteratively reweighted coordinate descent.

I. INTRODUCTION

Recovering a sharp image from a single blurry observation
is an important problem in image processing with a long
history [1]–[3]. The relation between the blurry observation
and the assumed sharp underlying image is often [2], [3]
modeled as

y = x ∗ k + n (1)

where y is the blurry image, x is the sharp underlying image,
k is the blur-kernel, and n is observation noise. In this paper,
it is assumed that the kernel k is invariant over the whole
image. The task is to estimate x from y alone. (Typically,
estimating x involves also estimating k.) This problem is ill-
posed as there are infinitely many triples (x,k,n) satisfying
(1), and even infinitely many pairs (x,k) satisfying y = x∗k.
It is therefore not immediately evident how one should tackle
the problem in order to arrive at a satisfactory solution. A
straightforward approach is to set up a statistical model and
to use a maximum-a-posteriori (MAP) estimator for finding a
pair (x̂, k̂) that maximizes the posterior

p(x,k|y) ∝ p(y|x,k) p(x) p(k). (2)

The observation model p(y|x,k) is chosen according to (1)
where the noise n is Gaussian, n

iid∼ N (0, σ2
n). The image

prior p(x) is a factorizing sparse prior on the image gradients,
as natural images are known to be approximately sparse in

the gradient domain [4]. The kernel prior p(k) is taken to be
constant over the set {k ≥ 0, ‖k‖1 = 1}. Taking the negative
logarithm of (2) yields the equivalent optimization problem

arg min
(x,k):k≥0, ‖k‖1=1

L(x,k), (3)

where the cost function to be minimized is

L(x,k) =
‖y − x ∗ k‖2

2σ2
n

+
∑

(i,j)∈∆

κ(xi − xj). (4)

Here, ∆ denotes the set of neighbored pixels and the
function κ(·) is induced by p(x) through the relation
p(x) =

∏
(i,j)∈∆ exp(−κ(xi − xj)). We refer to this approach

as naive MAP.
In a seminal paper [5], it was argued that naive MAP is

bound to fail: It has been observed that sparse priors on the
image gradients tend to favor blurry images over sharp ones,
and it was claimed that this leads to systematic preference
of the degenerate “no-blur” solution (x̂, k̂) = (y, δ) over the
“true” sharp image and blur kernel. As part of their analysis,
the authors also made available a dataset which they used for
illustrating this pathological behavior of the naive MAP [5].
However, the naive MAP’s basic ability to achieve sensible
deblurring results has been shown both in earlier experiments
[6] and more recently [7], [8]. A variety of explanations were
offered for the discrepancy between these empirical results and
the analysis in [5]. Many of these accepted the conclusion that
there are inherent problems with a naive MAP approach to
blind image deblurring.

In this paper, we review these analyses: We argue that the
original dismissal by [5] of naive MAP was unjustified, and
that the naive MAP can, in fact, prefer sharp images over
blurry ones. We also show empirically that naive MAP can—
at least on the dataset [5] used for its original dismissal—
perform on par with or better than many of the methods that
have been designed as a solution to its alleged defects.

Our contributions are the following: We provide a brief but
cohesive review of the literature on blind MAP deblurring.
Second, we add our own analysis in an attempt to resolve the
debate surrounding the naive MAP approach to blind image
deblurring. Finally, we evaluate our own naive MAP method
empirically on the original dataset [5]. We find that the results
of the method are at least on par with or better than any of
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the discussed approaches which attempt to avoid the MAP’s
perceived problems. Our overall conclusion is not that naive
MAP is the best approach to blind image deblurring—concerns
about robustness and computational efficiency, for instance,
are completely bypassed in our analysis. Rather, our overall
conclusion will be that (with respect to the model (1)) the
naive MAP is able not only to avoid the no-blur solution but
to deliver highly accurate deblurring results. We believe it is
of conceptual interest that the naive MAP approach to blind
image deblurring is not flawed. Indeed, a misunderstanding
of this point may indicate an insufficient understanding of the
blind deblurring problem.

The paper is structured as follows: In Section II, we revisit
in a cohesive manner some of the literature on the MAP for
blind image deblurring, adding our own analysis. In Section
III, we provide an empirical comparison of our own naive
MAP approach to the methods discussed in Section II. This
empirical comparison is performed on the original dataset of
[5]. Finally, in Section IV, we make some conclusions.

In the remainder of the paper, we assume that the blurry
image y has been generated by a ground-truth kernel k0 and
sharp image x0, i.e., y = x0 ∗ k0. (The dataset of [5] fulfills
this assumption.) We denote by xk0

and xδ the minimizers of
(3) with respect to x while holding k fixed to k0 and δ (the
Kronecker delta), respectively.

II. ANALYZING THE MAXIMUM-A-POSTERIORI APPROACH
TO BLIND IMAGE DEBLURRING

A. Reviewing the Literature
Different image estimates x can, by choice of a suitable

kernel k, yield identical noise-free blurry images x ∗ k and
hence yield the same likelihood p(y|x,k). As p(k) is constant
over its domain, the naive MAP relies exclusively on the image
prior p(x) to distinguish between such candidate estimates.
When comparing the true explanation (x0,k0) with the no-
blur explanation (y, δ), where the kernel estimate is a Kro-
necker delta and the image estimate equals the blurry image,
it has been recognized in [5] that there are two opposing effects
at work:
• The cost function κ(·) induced by a sparse prior is

typically concave and therefore prefers sharp pixel differ-
ences over blurred-out ones, favoring the true explanation
x0 over the blurry explanation y.

• However, κ(·) is typically also strictly increasing, so flat
surfaces are preferred over textured ones, favoring the
no-blur explanation over the true one.

Fig. 1(a) depicts a schematic 1D example: x0 is preferred for
its clear-cut edges while y is preferred for its flatter surfaces.
The key finding of [5] was that, on natural images, the detri-
mental effect consistently dominates the benign one, implying
that L(y, δ) < L(x0,k0). This is the case even if p(x) accu-
rately reflects the statistics underlying the sharp image x0.

The widely accepted conclusion drawn in [5] was that the
naive MAP is inherently unsuited for blind image deblurring,
and alternative approaches that would avoid this alleged de-
generacy were pursued instead.

x0

y

(a) 1D toy example of a sharp
signal x0 and a blurred signal y.

xk0

xδ

(b) The minimizers of (4) when k
is fixed to k0 and δ, respectively.

Fig. 1: Schematic comparison of blurred and sharp signals.
Left: Blurry signal and sharp ground truth. Right: Smoothed
signals when minimizing (4) in x for the given y and kernels
k0 and δ, respectively.

Based on the different dimensionalities of x and k, the
following strategy was advocated in [5] itself: Integrating out
x in (2) to estimate the kernel as k̂ = arg max p(k|y), and
subsequently estimating the image as x̂ = arg max p(x|k̂,y).
In order to approximate the intractable integration, it was
suggested to follow Fergus et al. [9] in using a variational
Bayesian (VB) strategy and a diagonal approximation to
a certain covariance matrix. Such a VB strategy was also
employed by Babacan et al. [10].

Alternatively, Xu and Jia [11], and Xu et al. [12] proposed
to estimate the kernel from latent images that contain only
the salient structures of x0. These salient structures were
either detected explicitly [11] or brought out through “L0-
regularization” of the image gradients [12].

All the while, however, the naive MAP has not been a total
failure; e.g., Chan and Wong [6] reported successful results
using total variation regularization. Perrone and Favoro [7]
noted this and attempted to reconcile it with the analysis of [5].
They argued that this suprising success is effected by an algo-
rithmic peculiarity of [6] (delaying the projection of the kernel
estimate onto the feasible set when optimizing). Effectively, it
was claimed, the deblurring algorithm of [6] would optimize
an objective which differs from the naive MAP objective (4).
The argument of [7] rests on a theoretical analysis of certain
1D toy examples for which the authors were able to prove the
pertinence of the distinction between the deblurring objectives.
They also showed empirically that a modified MAP-approach
as in [6] can produce respectable results on the dataset of
[5]. However, it is not clear that the difference between the
objectives is as decisive for natural image deblurring as it is
for the 1D toy signals considered in [7].

In contrast, Wipf and Zhang [13] showed that the VB
strategy advocated in [5] becomes equivalent to a MAP-
approach with an unorthodox image prior once the necessary
approximations for tractability are made as in [9], [10].
They argued that the special characteristics of the resultant
image prior (which introduces an interdependence between
x,k and σ2

n) are responsible for the empirical superiority of
VB strategies over the naive MAP. Still, this fundamental
relation between the successful VB strategies and the MAP
called into question the latter’s inherent unsuitedness for blind
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Fig. 2: Top row: Cost ratios between the estimates x̆k and x̆δ as functions of σ2
n (a), as well as the ratios between the

respectively incurred costs of the data fit term (b) and the prior term (c). Bottom row: Analog quantities for the downscaled
problem instance.

image deblurring. Wipf and Zhang [13] concluded that the
essence of a good prior p(x) for blind image deblurring lies
in the following property: For some visually convincing x̂
which in combination with k0 satisfactorily explains y (i.e.,
x̂ ∗k0 ≈ x0 ∗k0), the prior should satisfy p(x0 ∗k0)� p(x̂),
meaning that it favors the desired explanation (x̂,k0) over the
“no-blur” explanation (x0 ∗ k0, δ). They recognized the “L0-
prior” of [12] as such a prior but accepted the conclusion from
[5] that natural image priors fall short in this regard and are
unsuited for blind image deblurring.

This notion was finally challenged by Cho and Lee [8],
who showed empirically that more natural image priors can
also induce a cost function with the property L(xk0

,k0) <
L(xδ, δ). The apparent contradiction between this finding and
the analysis in [5] is resolved by noting that, even though x0

does have lower probability and therefore a higher incurred
cost under the prior p(x), xk0

—being a minimizer of (4)—
will be a smoothed version of x0 (see Fig. 1(b) for a schematic
depiction) with a correspondingly higher probability under
p(x). Here, xk0 should be identified with x̂ from the preceding
paragraph. Only in the limit σ2

n → 0 is xk0
bound to equal

x0 (and xδ bound to equal y), so that the problematic relation
L(xk0

,k0) > L(xδ, δ) holds.1 Cho and Lee [8] also evaluated
their own MAP approach on the dataset [5], finding it to
consistently avoid the no-blur solution and yielding acceptable
results.

1Actually, xk0
need not equal x0 even as σ2

n → 0 since the mapping
x 7→ k0 ∗ x need in general not be injective. However, this qualifier is
irrelevant to our argument.

B. Extending the analysis
Our own analysis resembles Cho and Lee’s [8] and also

focuses on the images of the dataset [5]. However, their
analysis is entirely in the gradient domain, meaning that their
cost function is of the form

‖y′ − x′ ∗ k‖2

2σ2
n

+
∑
i

κ(x′i), (5)

where x′ and y′ represent image gradients. This strategy is
natural and common since convolution preserves the equality
y = x ∗ k when taking the gradients of x and y. But the
quantity ‖y − x ∗ k‖2 is not invariant to taking the gradients
of x and y. While this does not invalidate their results, the
setup in [8] thereby deviates from the setup of [5].

In contrast, we consider a cost function of the form (4)
to show that L(xk0

,k0) may be lower than L(xδ, δ) also in
the setup of [5].2 We also go beyond [8] in analyzing the
individual contributions of the data-fit term and the prior term
to the total cost, and in analyzing how downscaling the images
affects the relation between L(xk0 ,k0) and L(xδ, δ).3 We use
the cost function (4), with

κ(u) ,

log
∣∣∣ uσ0

∣∣∣+ 1
2 if u2 > σ2

0

u2

2σ2
0

otherwise.
(6)

2It might be objected that our function κ(·) in (6) is different from the
κ(·) = | · |α, 0 < α < 1 in [5]. While we agree that our κ(·) is better suited
for the task, the analysis and findings of [5]—i.e., that κ(x0) > κ(y)—
remain unchanged for our κ(·).

3Solving downscaled problem instances and using the solutions for initial-
ization when solving the original problem is a widely used strategy in blind
image deblurring.
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This function κ(·), which is the plain SNUV function of [14],
admits a variational representation in the sense of [15]. It has
recently been used for multi-image blind deblurring [16]. For
the experiments in this paper, the parameter σ2

0 is set to 10−4.
Ideally, we would assess the ratio L(xk0

,k0)/L(xδ, δ). As
(4) is a non-convex problem, its global minimizer is difficult to
obtain. We therefore resort to the proxy L(x̆k0 ,k0)/L(x̆δ, δ),
where x̆k0 and x̆δ are approximations to xk0 and xδ that are
obtained by iteratively reweighted coordinate descent (IRCD)
as in [16]. We maintain that this proxy is valid for two
reasons: First, since the same algorithm is used for optimizing
both problem instances, the estimate of the cost ratio should
not be biased. Second, even if this estimate is biased, the
relation L(x̆k0 ,k0)/L(x̆δ, δ) < 1 still indicates that the cost
function favors the sharp explanation (x̆k0

,k0) over the no-
blur explanation (x̆δ, δ). So successful deblurring can be
explained in this way, without arguing that the optimization
algorithm systematically produces results which are at odds
with the purported cost function (as is done in [7]).

The estimated ratios L(x̆k0
,k0)/L(x̆δ, δ) for the dataset [5]

are depicted as functions of σ2
n in Fig. 2(a). Figs. 2(b) and 2(c)

depict the ratios of the data-fit and prior term of (4), respec-
tively. Note that for suitable choice of σ2

n ∈ [10−4, 10−3], the
cost function overwhelmingly favors the sharp explanation,
and that this is primarily induced by the lower prior cost of
x̆k0

. For very small σ2
n, the effect described by [5] occurs

with respect to the prior cost (Fig. 2(c)) and also the data-fit is
much worse for x̆k0

than for x̆δ (Fig. 2(b)), so that the no-blur
explanation is favored over the sharp one. In contrast, for very
large σ2

n, both x̆k0 and x̆δ are heavily smoothed images which
need to account for y only loosely. There is no consistent
discrimination between them in terms of cost in this regime.

The bottom row of Fig. 2 depicts analogous statistics for
versions of y and k0 that have been downscaled by approx-
imately a factor of 2 using bilinear interpolation. (We use
the superscript “↓” to denote the downsampled quantities, e.g.
y↓.) Note that the cost function now consistently favors the
desired solution if σ2

n ∈ [10−4, 10−3]. This happens even
though bilinear interpolation does not preserve the inequality
y = k0 ∗ x0, so that k↓0 is at best a crude approximation to
the true blur kernel at smaller scale. The implication is that
naive MAP should also be applicable in combination with a
multi-resolution scheme.

III. EMPIRICAL EVALUATION

Even a vanilla variant of naive MAP deblurring using the
cost function from Section II-B and IRCD [14], [16] for
optimization is successful in blind deblurring. But optimal
results are achieved when some common tricks of the trade
are used:

First, a multi-resolution scheme is used, where k is initial-
ized based on the kernel estimate from a downsampled version
of the deblurring problem: Section II-B has shown that the
discrimination between the desired and the no-blur solution is
at least as good for the downsampled problem, and the search
space is smaller, leading to more robust inference.

0.5 1.0 1.5 2.0 2.5 3.0

SSD Error Ratio

0%

20%

40%

60%

80%

100%

S
u
cc
es
s
P
er
ce
n
ta
g
e

Fergus [9]
Babacan [10]
Perrone [7]
Wipf [13]
Cho [8]
This paper
(custom nonblind)

Fig. 3: Cumulative histogram of the error ratio on dataset [5].

Second, deblurring starts with a large value of σ2
n such

as 10−3 (or even 10−2 in the downsampled problem) that
exhibits the desired property L(xk0

,k0) < L(xδ, δ) and also
leads to larger progress per IRCD iteration. Since a large σ2

n

would lead to an oversmoothed image and a correspondingly
inaccurate kernel estimate, σ2

n is then iteratively decreased
during the optimization. This relies on the non-convexity of
the cost function together with the monotonicity of IRCD [14]
for staying in the desired basin of attraction.

We also add an L2-penalty to the kernel as we have observed
that this leads to somewhat “smoother” kernel estimates and
slightly better overall results.4

In Fig. 3, we report results for the dataset [5] originally used
to illustrate the inadequacy of naive MAP for blind image
deblurring. All ratios between the sum-of-squared-distance
(SSD) deblurring error of the estimated and true kernel were
obtained using the non-blind deblurring algorithm of [17]—
except for [10] who used their own non-blind deblurring
algorithm. Our results appear to be at least on par with or
better than any of the approaches discussed in Section II which
attempt to avoid the MAP’s perceived problems [9], [10], [12],
[13].5 This is in contrast to the naive MAP “proof-of-concept”
results of [7], [8] which are significantly outperformed by [13].

Using their own non-blind deblurring stage allows [10] to
deblur some of the images at an error ratio below one. To
compare against their improved non-blind deblurring stage,
Fig. 3 also includes results (dashed) of our method combined
with a custom non-blind deblurring algorithm fixing k and
using a variational representation of the Huber function [14],
[18] for κ(·) in (4), which are superior to [10].

A visual example of our deblurring algorithm (using our
own non-blind deblurring stage) is shown in Fig. 4. An

4We emphasize that this L2-penalty is in no way necessary or essential for
avoiding the no-blur solution in any of our experiments.

5The results of [12] are not depicted in Fig. 3 but are not superior to ours.
Numerical results of [11] for the dataset [5] appear to be unavailable.
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(a) Blurry image (b) Deblurred image and estimated kernel (c) Ground truth image and blur kernel

Fig. 4: Example from dataset [5].

additional example with higher resolution is given in Fig. 5,
showing that naive MAP can also deblur larger images.

IV. CONCLUSION

We have revisited the original criticism [5] of the naive
MAP approach for blind image deblurring and the subsequent
literature. We have then attempted to show through conceptual
analysis and experiments that this criticism is unwarranted.
In evaluating our own variant of the naive MAP on the key
dataset of [5] we have shown that a MAP approach not only
avoids the no-blur solution but is able to produce high-quality
results that are as good as any of the approaches that have
been proposed as superior alternatives.

We do not claim that the naive MAP approach is superior in
practice to other approaches, but we do claim that its reputation
of being fundamentally flawed is unwarranted.
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