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Abstract—Face hallucination has been a highly attractive
computer vision research topic in recent years. It is still a
particularly challenging task since the human face has a complex
and delicate structure. In this paper, we propose a novel network
structure, namely end-to-end Generative Adversarial Face Hal-
lucination through Residual in Internal Dense Network (GAFH-
RIDN), to hallucinate an unaligned tiny (32×32 pixels) low-
resolution face image to its 8× (256×256 pixels) high-resolution
counterpart. We propose a new architecture called Residual
in Internal Dense Block (RIDB) for the generator and exploit
an improved discriminator, Relativistic average Discriminator
(RaD). In GAFH-RIDN, the generator is used to generate
visually pleasant hallucinated face images, while the improved
discriminator aims to evaluate how much input images are
realistic. With continual adversarial learning, GAFH-RIDN is
able to hallucinate perceptually plausible face images. Extensive
experiments on large face datasets demonstrate that the proposed
method significantly outperforms other state-of-the-art methods.

Index Terms—Face Hallucination, Computer Vision, Genera-
tive Adversarial Network, Hallucinated Face Images

I. INTRODUCTION

Face Hallucination (FH), also known as Face Super-
Resolution (FSR), is a domain-specific image Super-
Resolution (SR) problem, which refers to hallucinate the High-
Resolution (HR) face images from their Low-Resolution (LR)
counterparts. It is a significant task in the face analysis field,
which is of remarkable benefit to computer vision applications
such as face surveillance [1] and recognition [2]. However,
face hallucination is an ill-posed inverse problem and par-
ticularly challenging since the LR image may correspond to
many HR candidate images and has lost many crucial facial
structures and components [3]–[5]. In order to hallucinate high
quality face images, many FH methods have been proposed.

* Corresponding author: Shan Du (shan.du@ubc.ca). This work was sup-
ported by The University of British Columbia Okanagan [GR017752] and
Lakehead University [11-50-16112406].

Generally, we can classify these approaches into two cate-
gories: traditional methods and deep learning-based methods.

Many traditional methods have been proposed to address
face hallucination tasks [6]–[8]. Baker and Kanade [6] pre-
sented the image pyramid model to learn the best relationship
between LR and HR patches, which can reconstruct high-
frequency details of LR face images. In [7], Wang and
Tang employed eigen-transformation to build a linear mapping
between LR and HR face subspaces. By adopting relationship
between particular facial components, Yang et al. [8] com-
bined the face priors to recover facial information from HR
image components.

Recently, deep learning-based methods have emerged and
achieved the state-of-the-art performance [9]–[12]. Dong et al.
[9] firstly introduced deep learning-based SR method named
SRCNN that directly learned an end-to-end mapping between
HR images and LR images. In [10], Zhou et al. presented
the novel Bi-channel convolutional network to hallucinate face
images in the wild. The Cascaded Bi-Networks (CBN) was
presented by Zhu et al. [11], in which two sub-networks (face
hallucination and dense correspondence field estimation) were
optimized alternately.

The limitation of the above face hallucination methods is
that they utilize reconstruction loss such as L1 or L2 to op-
timize the hallucination process, which is prone to producing
over-smoothed hallucinated images even though these models
obtained higher Peak Signal-to-Noise Ratio (PSNR) value
[13]. To address this problem, several Generative Adversarial
Network (GAN) -based models were proposed [3], [4], [14]–
[17]. It is proved that GAN-based models using powerful
constraint losses are able to further generate visually realistic
HR images [18]. Christian et al.’s work [14] extended GAN
to the SR field and proposed an effective method, called
SRGAN utilizing an adversarial loss and the perceptual loss.
Following SRGAN, Wang et al. [15] presented the ESRGAN
by proposing new generator architecture and using improved
perceptual loss. Yu and Porikli [19] proposed MTDN based
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Fig. 1. The architecture of our end-to-end Generative Adversarial Face Hallucination through Residual in Internal Dense Network (GAFH-RIDN). IHF

represents HF image. IHR and ILR denote HR and LR face image respectively. K, n, and s represent kernel size, the number of feature maps and strides
respectively. SFM is the Shallow Feature Module. MDBM describes the Multi-level Dense Block Module. UM is the Upsampling Module. DNB represents
the Dense Nested Block as shown in Fig. 2. FSFM denotes shallow feature maps. FMDBM represents outputs of MDBM. By fusing FSFM and FMDBM ,
the fused feature Ffused is obtained.

on GAN. Nevertheless, when the input resolution is super low,
it fails to recover high quality face images, leading to blurred
patterns and severe artifacts.

The aforementioned GAN-based face hallucination mod-
els are prone to model collapse [3], [14]–[16], resulting in
ghosting artifacts in the hallucinated results, especially when
the input image resolution is extremely low. To address this
problem, in this paper, we propose a novel GAN-based FH
method, end-to-end Generative Adversarial Face Hallucination
through Residual in Internal Dense Network (GAFH-RIDN),
as shown in Fig. 1. The contributions of this paper are mainly
in four aspects:

1) Our proposed method is capable of hallucinating an LR
(32×32 pixels) unaligned tiny face image to a Hallucinated
Face (HF) image (256×256 pixels) with an ultra upscaling
factor 8×.

2) We propose the Residual in Internal Dense Block (RIDB),
which boosts the flow of features through the generator, allevi-
ates the gradient vanishing problem, and provides hierarchical
features for the hallucination process.

3) We exploit the Relativistic average Discriminator (RaD)
[20], which evaluates the probability that the given HR face
images are more realistic than HF images.

4) Contrary to classical face hallucination methods [3],
[4], [21], our method does not involve any prior information
or claim facial landmark points for its hallucinating, which
facilitates the whole training process and enhances the model
robustness.

II. PROPOSED METHOD

In this section, we will first describe the proposed architec-
ture and demonstrate the Residual in Internal Dense Block
(RIDB). Next, we will discuss the improved discriminator.
Finally, we will present the perceptual and adversarial losses
function used in the GAFH-RIDN. The architecture of GAFH-
RIDN is shown in Fig. 1.

A. Network Architecture

As shown at the top of Fig. 1, the proposed generator mainly
consists of three stages: Shallow Feature Module (SFM),
Multi-level Dense Block Module (MDBM), and Upsampling
Module (UM). The LR face image ILR is fed into the SFM
as the initial input. At the end, the hallucinated face image
IHF is obtained from the UM. As for the SFM, we utilize
one convolutional (Conv) layer to extract the shallow feature
maps. It can be expressed as follows:

FSFM = fConv(ILR) (1)
where fConv represents the Conv operation in the SFM. FSFM

denotes the shallow (low-level) features and serves as the input
to the MDBM. The following module MDBM is built up
by multiple Dense Nested Blocks (DNB) formed by several
RIDBs, which will be discussed in the next subsection. The
procedure of high-level feature extraction in MDBM can be
formulated as:
FMDBM = fDNB,i(fDNB,i−1(· · ·(fDNB,1(FSFM )) · ··))

(2)
where fDNB,i denotes high-level feature extraction of the i-th
DNB, FMDBM represents the high-level feature extracted by
MDBM. As for each DNB, it includes 3 RIDBs cascaded by
residual connections and one scale layer, as shown in Fig. 2.
It can be formulated as:
FDNB,i = αFi,j(Fi,j−1(· · ·Fi,1(FDNB,i−1) · ··))+FDNB,i−1

(3)
where FDNB,i−1, FDNB,i denotes the input and output of
i-th DNB, Fi,j represents the j-th RIDB of the i-th DNB.
We assign α to be 0.2 in the scale layer. Next, the low-level
and high-level features should be fused to boost hallucination
performance via skip connection. Let Ffused denotes the fused
feature, the feature fusion process can be expressed as:

Ffused = fConv(FMDBM ) + FSFM (4)
Furthermore, the fused feature Ffused is passed to the UM
followed by one Conv layer. And then, the fused feature is
transformed from the LR space to the HR space through
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Fig. 2. Top: Dense Nested Block (DNB) composed of multiple RIDBs. Bottom: The architecture of our proposed Residual in Internal Dense Block (RIDB).

upsampling layers in the UM. The hallucination process can
be formulated as:

IHF = fUM (Ffused) = HGAFH−RIDN (ILR) (5)
where fUM represents the upsampling operation in the UM,
HGAFH−RIDN denotes the function of our GAFH-RIDN.
Finally, we obtain the HF image IHF .

B. Residual in Internal Dense Block
As mentioned in Sec.1, we propose a novel architecture

RIDB for the generator, which is used to form the DNB
(as shown in Fig. 2). The proposed RIDB is able to extract
hierarchical features and address the vanishing-gradient prob-
lem, which is the commonly encountered issue in [14]–[16],
[22], [23]. The proposed RIDB is made up of four internal
dense blocks and all the internal dense blocks are cascaded
through residual connections performing identity mapping.
The architecture of the RIDB is expressed as:
FRIDB,p = Fp,q(Fp,q−1(··Fp,1(FRIDB,p−1)··))+FRIDB,p−1

(6)
where FRIDB,p−1 and FRIDB,p denote the input and output
of the p-th RIDB respectively, Fp,q represents the q-th internal
dense block of p-th RIDB. In addition, an internal dense block
is a composition of two groups of the Conv layer followed by
the LeakyReLU activation layer. And the two groups are linked
by dense skip connections. Each internal dense block can be
calculated as follows:

Fq,k = δ(Wq,k[Fq,k=1, Fq,k=2]) (7)
where Fq,k represents the output of k-th Conv layer of q-th
internal dense block. [Fq,k=1, Fq,k=2] refers to the concatena-
tion of feature maps in q-th internal dense block. Wq,k is the
weights of the k-th Conv layer. δ denotes the LeakyReLU
activation. By involving residual learning and more dense
connections in the RIDB, the feature maps of each layer are
propagated into all succeeding layers, promoting an effective
way for the generator to extract hierarchical features and
strengthening the flow of graidents through the network.
Thus, our proposed method is capable of obtaining abundant
hierarchical feature information and alleviating the vanishing-
gradient problem.

C. Improved Discriminator
Instead of using the discriminator of Standard GAN

(SGAN) [26], inspired by [20], we adopt the Relativistic
average Discriminator (RaD) in our method. Thanks to RaD,
the discriminator of GAFH-RIDN has the ability to distinguish

how the given HR face image is more authentic than the
hallucinated face image. The architecture of our discriminator
is shown at the bottom of Fig. 1. The limitation of the SGAN
in [14], [16], [26] is that they only concentrate on increasing
the probability that fake samples belong to real rather than
decreasing the probability that real samples belong to real
simultaneously. In other words, the standard discriminator
ignores real samples during the learning procedure [20]. As
a result, the model can not provide sufficient gradients when
updating the generator, which causes the problem of gradient
vanishing for training the generator. The standard discrimina-
tor can be expressed as:

D(x) = σ(C(x)) (8)
where x can be either IHR or IHF in this context, σ repre-
sents the sigmoid function, and C(x) denotes the output of
non-transformed discriminator. As Eq. 8 shows, the standard
discriminator only evaluates the probability for a given real
sample or a generated sample. According to [20], RaD takes
into consideration that how a given real sample is more
authentic than a given generated sample. The RaD can be
formulated as:

D(xr, xf ) = σ(C(xr)− Exf
[C(xf )]) (9)

where Exf
denotes the average of the fake samples in one

batch. Contrary to the standard discriminator, as Eq. 9 shows,
the probability predicted by RaD relies on both real sample
xr and fake sample xf , which is capable of making the
discriminator to become relativistic. In our GAFH-RIDN, we
can optimize the RaD by Ladv

D based on Eq. 10, and the
generator is updated by Ladv

G , as in Eq. 11.
Ladv
D =− EIHR

∼ p(IHR) [log (D(IHR, IHF ))]

− EIHF
∼ p(IHF ) [log (1−D (IHF , IHR))]

(10)

Ladv
G =− EIHR

∼ p(IHR) [log (1−D(IHR, IHF ))]

− EIHF
∼ p(IHF ) [log (D (IHF , IHR))]

(11)

where IHR and IHF denote HR images and HF images
respectively, D(·) describes the probability predicted by RaD,
E represents the expectation, IHR ∼ PIHR

and IHF ∼ PIHF

represents the HR images distribution and HF images distri-
bution respectively. Because of this property, our proposed
GAFH-RIDN is capable of allowing the probability of IHR

being real to decrease while letting the probability of IHF

being real increase and benefiting from gradients of both
IHR and IHF in the adversarial training. Therefore the pro-
posed method can address the gradient vanishing problem.
Our discriminator contains 9 Conv layers with the number
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Fig. 3. Comparison of visual results with state-of-the-art methods on scaling factor 8×. (a) HR images, (b) LR inputs, (c) Bicubic interpolation, (d) Results
of SRGAN [14], (e) Results of ESRGAN [15], and (f) Our results

TABLE I
QUANTITATIVE COMPARISON ON CELEBA DATASET FOR SCALING FACTOR 8×, IN TERMS OF AVERAGE PSNR(DB) AND SSIM. NUMBERS IN BOLD ARE

THE BEST EVALUATION RESULTS AMONG STATE-OF-THE-ART METHODS.

Method Bicubic VDSR [12] CBN [11] SRGAN [14] FSRFCH [24] TDN [5] Kim et al. [25] ESRGAN [15] Ours
PSNR 22.90 19.58 18.77 20.64 23.14 22.66 22.96 20.32 24.28
SSIM 0.65 0.57 0.54 0.62 0.68 0.66 0.69 0.57 0.71

of 3x3 kernels and the stride of 1 or 2 alternately. The
channels of feature maps increase by a factor 2, from 64 to
512. The resulting 512 feature maps are passed through two
dense layers. Finally, after the sigmoid activation layer, RaD
estimates the probability that the given HR face images are
more realistic than HF images.

D. Perceptual Loss
Taking advantage of perceptual loss Lperceptual is able to

promote ulteriorly detail enhancement [27], [28]. We adopt
the pre-trained VGG-19 [29] as the feature extractor to obtain
feature representation used to calculate Lperceptual. We extract
low-level feature maps of HR and HF images obtained by the
3rd Conv layer before the 4th maxpooling layer respectively.
HR and HF feature maps are defined as φ3,4. Lperceptual is
defined as follows:

Lperceptual =
1

WH

H∑
h=1

W∑
w=1

‖φ3,4(IHR)− φ3,4(IHF )‖2

(12)
where φ represents the feature extractor and W,H denote the
dimensions of feature maps.

E. Total Loss
The total loss function Ltotal for generator can be rep-

resented as two parts: Lperceptual and Ladv
G . We introduce

the perceptual loss to enhance perceptual quality of the HF
image from the visual aspect. In addition, an adversarial loss is
expected to improve the fidelity of the HF image. The formula
is defined as follows:

Ltotal = αLperceptual + βLadv
G (13)

where α and β are corresponding hyper-parameters used to
balance Lperceptual and Ladv

G . We empirically set α = 1, β =
10−3 respectively.

III. EXPERIMENTS
In this section, we will first present the details of datasets

and implementation. Next, we will discuss the comparisons
with the state-of-the-art methods [5], [11], [12], [14], [15],
[24], [25] qualitatively and quantitatively.

A. Implementation Details
We conducted experiments on the large-scale face image

dataset, CelebA [30]. It consists of 202,599 face images of
10,177 celebrities. We randomly selected 162,048 HR face
images as the training set, and the next 40,511 images were
used as the testing set. We cropped the HR face images
and resized them to 256×256 pixels, and then obtained LR
(32×32 pixels) input images by downsampling HR images
using bicubic interpolation with a downsampling factor of 8×.
In the proposed generator, we set the number of DNBs to
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4, and totally 12 RIDBs were used. In the training phase, we
trained the proposed method for 10000 epochs and the training
batch size was set to 8. We used Adam with β1 = 0.9, β2
= 0.999 to optimize the proposed method. The learning rate
was set to 10−4. We alternately updated the generator and
discriminator.

B. Comparisons with State-of-the-art Methods
In the experiments, we compared the proposed method with

the state-of-the-art methods [5], [11], [12], [14], [15], [24]
qualitatively and quantitatively.

Qualitative Comparison: Qualitative results among these
methods are shown in Fig. 3. We observe that the bicubic
interpolation produces heavy blur and fails to generate clear
textures. For SRGAN [14], it outputs noticeable artifacts
around facial components, especially in the eyes, nose, and
mouth regions. In particular, ESRGAN [15] produces unreal-
istic textures and involves severe ghosting artifacts. In contrast,
it is obvious that our proposed method is capable of producing
visually pleasant and authentic HF images.

Quantitative Comparison: Table 1 shows the quantitative
comparison on 8× HF images. The results demonstrate that
our proposed method achieves the best performance among all
methods. Especially, our method produces the highest score
of 24.28dB/0.71 in terms of PSNR and SSIM respectively.
Furthermore, compared with the second-best FSRFCH [24]
23.14dB/0.68, our method outperforms it with a large margin
of 1.14dB/0.03. The performance proves the effectiveness
of the proposed RIDB and the optimized RaD used in our
method.

IV. CONCLUSIONS

In this paper, we proposed a novel end-to-end face hal-
lucination method (GAFH-RIDN) to hallucinate a tiny LR
(32×32 pixels) unaligned face image to its 8× HR (256×256
pixels) version. By exploiting Residual in Internal Dense
Block (RIDB) and Relativistic average Discriminator (RaD),
our method successfully produced photo-realistic hallucinated
face images. Extensive experiments demonstrated that GAFH-
RIDN was superior to the state-of-the-art methods on the face
benchmark qualitatively and quantitatively.
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