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Abstract—Synthetic terrain realism is critical in VR appli-
cations based on computer graphics (e.g., games, simulations).
Although fast procedural algorithms for automated terrain gener-
ation do exist, they still require human effort. This paper proposes
a novel approach to procedural terrain generation, relying on
Generative Adversarial Networks (GANs). The neural model
is trained using terrestrial Points-of-Interest (PoIs, described
by their geodesic coordinates/altitude) and publicly available
corresponding satellite images. After training is complete, the
GAN can be employed for deriving realistic terrain images on-
the-fly, by merely forwarding through it a rough 2D scatter plot
of desired PoIs in image form (so-called “altitude image”). We
demonstrate that such a GAN is able to translate this rough,
quickly produced sketch into an actual photorealistic terrain
image. Additionally, we describe a strategy for enhancing the
visual diversity of trained model synthetic output images, by
tweaking input altitude image orientation during GAN training.
Finally, we perform an objective and a subjective evaluation
of the proposed method. Results validate the latter’s ability to
rapidly create life-like terrain images from minimal input data.

Index Terms—Artificial Terrain, Generative Adversarial Net-
works, Deep Learning, Procedural Content Generation.

I. INTRODUCTION

Manually-created virtual terrains are still superior in quality
than ones derived with automated means, at the cost of
significant labour and time expenses. The complexity of the
real world (rocks, grass, trees, mountains) renders the creation
of plausible, original terrain content still a challenging task.
This issue can be bypassed using Procedural Content Gener-
ation (PCG), i.e., a set of methods for (semi-)automatically
creating new content for 2D/3D graphics on-the-fly, and thus
replacing the artistic part of content generation with a choice of
tweakable parameters and random elements. PCG algorithms
can be used for on-the-fly creating 2D terrain images that
encode 3D characteristics (e.g., altitude); this terrain image
can then be transformed into a 3D terrain mesh at a final
post-processing step.

Typical noise-based terrain generators (e.g., Worley [1],
simplex [2], Perlin [2], value [3] or diamond-square [4]) suffer
with regard to memory/computational requirements and/or
output quality. More recent PCG approaches that have been
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applied for terrain generation, such as Software Agents [5],
Erosion Modeling [6] and Evolutionary Algorithms [7] also
typically require significant manual post-processing (e.g., ap-
plying an image overlay to achieve a realistic look) and/or
extensive manual parameter tuning.

Thus, Deep Neural Networks (DNNs) such as Generative
Adversarial Networks (GANs) [8] have been alternatively
explored for visual content generation. In [9] a GAN-based
method is presented for multi-scale terrain texturing with
reduced tiling artifacts. It involves training a GAN to upsample
and texture map a low-resolution terrain input. Thus, during
the inference stage, low-resolution terrain images can be
translated on-the-fly to high-resolution ones; thus the terrain
is needed upfront as input to be up-scaled. Other GAN-based
methods [10] [11] create mountain-like 3D terrains, using in-
formation extracted from training height map data. Acquiring
height maps is not trivial, while the generated results need to
be heavily post-processed, since they are missing textures and
realistic visual features (e.g., grass, rivers, forests, etc.).

In comparison, this paper presents a novel GAN-based
method for procedural terrain generation with significantly
more relaxed input data requirements (very loose constraints
are only imposed upon the input data) and a higher diversity
of terrain results. We call this proposed method GAN-terrain.
Unlike other GAN-based terrain generation methods, it does
not require sophisticated input data types (e.g., height maps).
Thus, after training, it only incurs minimal manual supervision,
since its required input simply consists of easily constructed
(in a matter of seconds), rough 2D scatter plots of desired
Points-of-Interest (PoIs) in image form; we call such a plot
an “altitude image”. The output is a 2D textured terrain
resembling a satellite image, with colour encoding height
and/or geomorphological properties (e.g., snow, water-body,
forest, etc.), so that it can then be trivially post-processed
and converted into a semantically annotated 3D terrain mesh.
During training, the model learns to extract altitude/spatial
information from colour density/distances of input PoIs.

GANs can easily learn complex real-word semantic content,
like mountains, sea, deserts, islands, or flora, in a way that
follows natural spatial alignment constraints (e.g., no jungles
depicted in frozen Arctic regions, no rivers flowing uphill,
etc.). However, simply training a GAN on a large set of
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ground-truth terrain images does not guarantee that the Gen-
erator will learn to produce complex content that obeys sim-
ilar restrictions. Therefore, we opted for an Image-to-Image
Translation GAN, training it using geographic coordinates and
altitude information from a dataset of neighbouring landmarks,
paired with the corresponding satellite image of their region.

The main advantage of GAN-terrain lies in its novel input
strategy, that simplifies the actual use of the deployed DNN
model on the field: new inputs for the trained network, i.e.,
novel altitude images at the inference stage, can be trivially
created in a matter of seconds with any image processing
software. In fact, although the training/evaluation dataset for
this paper was constructed using real geographic data, we
have successfully tested the trained GAN-terrain model with
arbitrary input images; the Generator still predicts relatively
realistic terrain images.

The only existing methods partly similar to GAN-terrain
are [12] and [13]. However, the first one also requires height
maps for training, while both of them rely on unconditional
GANs for 2D terrain image/texture generation. In contrast,
GAN-terrain does not require height maps and is built upon
the Image-to-Image Translation framework for increased ro-
bustness.

II. GAN-TERRAIN METHOD

Generative Adversarial Network (GAN) are employed as the
primary tool for completing the procedural terrain generation
task. GANs are composed of two sub-networks being trained
jointly, namely a Generator (G) and a Discriminator (D). After
training, only the Generator is typically retained for content
generation purposes. In this paper, the conditional GAN variant
for Image-to-Image Translation tasks is employed [14]. GAN
theory and training is briefly presented below (details in [8]
[14]).

A. Generative Adversarial Networks

In an image synthesis scenario, GANs are generative models
that learn a mapping G : z 7→ Y from a random noise vector
z ∈ Rn to output image Y ∈ Rk×l or a tensor Y ∈ Rk×l×m.
In contrast, conditional GANs learn a mapping G : {X, z} 7→
Y from observed input image X ∈ Rp×r and random noise
vector z, to Y.

The Generator G is trained to produce outputs that can-
not be distinguished from “real” images by an adversarially
trained Discriminator D, which gradually learns to discern the
synthetically generated images from real ones. The objective
of a conditional GAN can be expressed as:

LcGAN (G,D) = EX,Y [logD (X,Y )] +

+ aEX,z [log (1−D (X, G (X, z)))] ,

where G tries to minimize this objective against an adversary
D that tries to maximize it:

G∗ = argmin
G

max
D

LcGAN (G,D) . (1)

In the unconditional variant, where the Discriminator does
not observe X, it holds that:

LcGAN (G,D) = EY [logD (Y)]+EX,z [log (1−D (G (X, z)))] .
(2)

It is best practice to augment the GAN objective with
a more traditional loss, such as L1 or L2 norm. Although
the Discriminator’s job remains unchanged, the Generator
is additionally constrained to stay near the corresponding
ground-truth output as follows:

L (G) = EX,Y,z [‖Y −G (X, z)‖] . (3)

The overall training objective is:

G∗ = argmin
G

max
D

LcGAN (G,D) + λL (G) . (4)

B. GAN-Terrain

The proposed GAN-terrain method consists in training a
conditional GAN for image synthesis so that it learns to map
rough 2D Point-of-Interest (PoI) scatter maps (so-called alti-
tude images) into realistic satellite terrain images containing
geomorphological details. In the inference/deployment stage,
after training has been completed, a similar altitude image can
be easily crafted at minimal labour and time expense (within
seconds), in order to be fed to the trained model as observed
input image X. The corresponding model output Y will be
a procedurally generated 2D terrain image with rich, color-
coded geomorphology that typically does not violate spatial
intuitions.

To train the desired conditional GAN model under this
framework, we initially collect a set of N earth surface PoIs
pi = [λi, φi, Ri]

T ∈ R3, i = 1, ..., N , composed of longitude
λi, latitude φi and altitude Ri components. The altitude is
rescaled and quantized to integer interval [0, 253], assuming
the height of the mount Everest (8.848m) is the maximum
possible value. These N vectors can be grouped into geo-
graphic patches, i.e., rectangle-shaped earth regions defined
from 4 PoIs. Subsequently, this set is uniformly sampled to
select a set of M geographic patches, so that most earth region
terrain variations are represented on the training dataset. Such
a representation of all earth terrain variations is essential for
high-quality, diverse content generation. Finally, for each of
the M geographic patches, we collect a random number of
PoIs falling geographically within it, as well as a satellite
image of the patch. Patch PoIs pji,i = 1, ...N are employed to
construct a 2D altitude image (λj , φj), of patch j = 1, ...M
where the horizontal/vertical coordinate corresponds to PoI
latitude/longitude(λji, φji), respectively, while the luminance
of each point encodes PoI normalized altitude Rji. Such
altitude images are very sparse, since typically we sample
only few Earth surface points pji,j = 1, ...M per patch.
All other altitude image pixels have a value of 255 (white
on grayscale) or (255,255,255) (white on RGB) and are
excluded from altitude evaluation. This 2D altitude image,
converted into image form, is an observed input image Xj ,
j = 1, ...M . The corresponding satellite image (depicting
actual geomorphology of the patch region) is employed as
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Fig. 1: Four examples of GAN-terrain input/ground-truth/prediction triplets, having NHI similarity scores: a) 0.8393, b) 0.8824,
c) 0.9482, d) 0.7944.

ground-truth output image Yj , j = 1, ...M . Thus, the training
dataset is constructed by pairs {Xj , Yj}, j = 1, ...M .

Each 2D altitude image Xj can be constructed in two
slightly different ways: a) a grayscale one-channel image can
be derived by encoding normalized altitude Rji per-PoI as
a pixel luminance value. Alternatively, a linear color palette
can be used to convert normalized altitude Rji into RGB color
values, in order to finally obtain a three-channel colored image
(e.g., one from blue to yellow, where the deepest blue/yellow
denotes sea level/highest mountain peak level, respectively).
Both approaches were implemented and compared in the
context of this paper, as described in Section III.

As shown in Figure 1, the visual properties of the generated
content are correlated with the color-coded altitude of the
input PoIs; in all other respects GAN-terrain has realistically
filled-in the generated terrain details fully autonomously. At
model deployment-time, random input altitude images can be
constructed very rapidly on-the-fly in an automated manner,
thanks to the very minimal amount of required information.
Even manually drawn, swiftly sketched arbitrary images can
be utilized as inputs; a trained GAN-terrain model will suc-
cessfully interpret them as altitude images, as shown in Figure
4.

In general, output diversity is an important property of a
successful PCG system. In the GAN-terrain case, the purpose
of the final trained GAN model during system deployment is
not to precisely translate the input altitude image into an actual
satellite image, but to procedurally generate a new, realistic
but imaginary terrain, which may be only vaguely based on
the given input. Thus, in order to enhance trained model out-
put diversity, we optionally perform random rotations and/or
flipping of each Xj , j = 1, ...M to augment the training
dataset, without changing the corresponding Yj , j = 1, ...M .
Below, we refer to GAN-terrain models trained with/without
this optional augmentation strategy as “Augmented”/“Non-

augmented”, respectively.
As shown in Section III, this training set augmentation

strategy allows the final GAN to synthesize terrain images
of greater apparent diversity, by forcing it to ignore input
orientation during training. Thus, during deployment of the
trained model, small rotations to the input altitude image may
produce arbitrarily large rotations to the output, since output
orientation is in fact arbitrarily “decided” by the model and
not constrained by input orientation. Thus, the Non-augmented
model is forced more intensely to mimic ground-truth, while
the Augmented one typically provides a more diverse result.

III. GAN-TERRAIN EVALUATION

We employed publicly available geographical data [15] in
order to construct the training and testing sets for our method.
We initially collected N = 11.2 million world PoIs, which
were utilized to create M = 4300 geographic patches and
attach their corresponding satellite images (of 512×512 pixels
resolution) using the Microsoft Bing Maps API.

The employed GAN architecture was based on the Pix2Pix
Network [14]. The network was trained using 3000 in-
put/output patch pairs {Xj , Yj} and was evaluated using a
test set of 1300 input/output patch pairs. Color and grayscale
variants of the dataset were used for training separate GAN-
terrain models. Color 2D altitude images resulted in predicted
network outputs with a higher level of detail than the ones
obtained using grayscale inputs, thus GAN-terrain evaluation
proceeded with the color variant only. The results were im-
pressive, as GAN-terrain successfully created highly realistic
complex terrain images from very simplistic inputs. Training
was completed in 300 epochs, on a 24-core Intel Xeon PC with
256GB RAM and an NVIDIA GeForce GTX2080Ti GPU.

Evaluating the quality of synthesized images is an open
and difficult problem [16]. In this paper we chose a simple
objective evaluation approach, exploiting the fact that pixel
color in the output image encodes semantic information. Thus,
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we measured the Normalized Histogram Intersection similarity
(NHI) [17] between the 64-bin joint HSV color histograms
[18] of each GAN-terrain prediction and its corresponding
ground-truth image from the test set. Minimum/maximum NHI
similarity values are 0.0/1.0, respectively. High NHI similarity
between the ground-truth and predicted image histograms can
be interpreted as high semantic concordance among them, with
regard to the distribution of visible geomorphological details
(water bodies, forest, snow, mountains, etc.).

Quantitative results indicate that the mean NHI similarity
between 1300 ground-truth and predicted images is indeed
relatively high (0.7665). This implies that, when the trained
GAN model is given a previously unseen 2D altitude im-
age, it synthesizes a highly similar terrain image in terms
of semantic concordance. Although NHI similarity does not
capture differences between the two terrain images in terms
of the the exact landmass/coastline shape/orientation, this is
rather irrelevant to terrain image generation task, since our
goal is not to replicate the ground-truth terrain. Examples
of altitude image, ground-truth terrain image and predicted
output image triplets are presented in Figure 1. NHI similarity
for each triplet is included for visual inspection purposes.The
occasional phenomenon of semantic disconcordance between
ground-truth and predicted image (example in Figure 2) can
be attributed to the minimal information content of the input
altitude images, which is however the main advantage of the
proposed method: such 2D scatter plot inputs can be rapidly
and easily constructed in model deployment-time.

Fig. 2: Test set example of semantic disconcordance between
prediction and ground-truth. Here, the network avoided to
synthesize snow (NHI score: 0.58). However, the predicted
terrain image is still realistic-looking.

Additionally, we performed a subjective evaluation of gen-
erated terrain images, using 40 terrain images from our test set
and 10 observers. The goal of the subjective evaluation was to
let observers deduce in a systematic manner: a) whether the
predicted terrain images resembles a real satellite terrain image
(“plausibility”), and b) the spatial correspondence between the
input 2D altitude image PoIs and the predicted terrain image
(“correspondence”). We employed 20 predicted generated ter-
rain images shuffled with 20 ground-truth terrain images for
control purposes, totalling 40 terrain images. The participating
subjects did not know whether each terrain image they saw
was a ground-truth or a predicted one. For each image, they
recorded two integer score values in the range [1, 5] for
plausibility and correspondence evaluation, respectively.

TABLE I: Evaluation results of the Non-augmented GAN-
terrain model. Correspondence and plausibility are scored
using a scale in [1, 5], while NHI similarity is a percentage.
In all cases higher is better.

Type Mean NHI
Similarity

Mean
Correspondence

Mean
Plausibility

Predicted
Image 0.7665 4.6633 4.4682

Ground
Truth N/A 4.6138 4.5955

TABLE II: Predicted images diversity comparison between the
Non-augmented and Augmented model, using GIST descrip-
tors and total variance.

Measure Non-
augmented Augmented

Trace of GIST cov. matrix 0.18995 0.23454
Mean of the main diagonal
of GIST cov. matrix 0.000207 0.000244

Variance of the main diagonal
of GIST cov. matrix 3.33e-8 3.55e-8

Mean of NHI similarities
of joint HSV histograms
between ground-truth and
predictions

0.7665 0.74172

Subjective evaluation results, shown in Table I, indicate
that ground-truth and predicted images are nearly indis-
tinguishable by human subjects: mean correspondence for
predicted/ground-truth images was 4.6633/4.6138, respec-
tively, while mean plausibility for predicted/ground-truth im-
ages was 4.4682/4.5955, respectively. In fact, artificial GAN-
terrain images performed even better than the real ones.

Subjective evaluation was necessarily performed with a
GAN model trained using the non-augmented training dataset
variant of the proposed method, due to the nature of the
employed “correspondence” qualitative metric. Disabling the
proposed training data augmentation strategy, which was de-
scribed in Section II, imposes shape/orientation constraints to
be learned by GAN-terrain. Thus, absence of training dataset
augmentation may reduce the diversity of GAN-terrain outputs
during deployment. To quantify this possibility, we trained a
second GAN-terrain model using training data augmentation
and then compared the predictions of the two GAN-terrain
models on the test set. Evaluation consisted in calculating a
GIST global image description vector [19] for each predicted
terrain image in the test set, once for the Non-augmented and
once for the Augmented model, and subsequently computing
the mean global dispersion of these descriptors. This can be
measured by averaging over the total variance (i.e., trace of the
covariance matrix) of the 1300 960-dimensional GIST vectors
fi,i = 1, ..., 1300, separately for the two models.

The results, shown in Table II, indicate that the mean
global dispersion/total variance of test set predictions is sig-
nificantly greater on the Augmented model variant, where our
input augmentation strategy was enabled during training: it is
0.23454/0.18995 for the Augmented/Non-Augmented variant,
respectively. To grasp a sense of the significance of this
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(a)

(b)

Fig. 3: Outputs of pre-trained Non-augmented/Augmented
model (”Predicted Image I/II”, respectively) using two dif-
ferent altitude image inputs from the test set: a) and b).

difference in total variance magnitude, we report that the
mean/variance of the main diagonal of GIST covariance matrix
in the Augmented variant is 0.000244/3.55e-8, respectively. On
the other hand, mean NHI similarity of joint HSV histograms
between ground-truth and predictions is slightly higher for
the Non-augmented GAN-terrain model: it is 0.7665, versus
0.74172 for the Augmented case. This indicates a slight trade-
off between semantic concordance and output diversity.

Fig. 4: An example input/predicted image pair, using: a) the
pretrained Augmented GAN-terrain model, and b) an arbitrary
input (smiling face with glasses), manually drawn in less than
30 seconds.

IV. CONCLUSIONS
The proposed GAN-terrain method is able to derive real-

istic 2D terrain images resembling satellite images in model
deployment-time, given only 2D altitude images containing
rough PoI scatter plots that encode spatial distribution and
altitude of desired geographic landmarks. Although the altitude
images employed for training were constructed using real
geographic data, similar arbitrary input images can easily and
rapidly be created at the inference stage using any image pro-
cessing software. In contrast, all competing GAN-based terrain
generation methods require more sophisticated deployment-
time inputs that are comparatively difficult to construct. The
output images can be easily transformed into semantically

rich 3D terrain meshes by trivial post-processing. Extensive
evaluation of the generated terrain images indicates a relatively
high degree of semantic concordance between the expected
terrain geomorphology and the actually GAN-terrain gener-
ated ones, as well as very realistic and plausible generated
terrains. Additionally, GAN-terrain evaluation results indicate
a predicted terrain image diversity gain, at a very low penalty
in semantic concordance, when using the proposed training
data augmentation strategy. Future work may focus on actually
synthesizing 3D terrain content, generating both terrain image
texture and geometry data.
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