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Abstract—Learning-based image/video codecs typically utilize
the well known auto-encoder structure where the encoder trans-
forms input data to a low-dimensional latent representation.
Efficient latent encoding can reduce bandwidth needs during
compression for transmission and storage. In this paper, we
examine the effect of assigning high level coarse grouping labels
to each latent vector. Designing coding profiles for each latent
group can achieve high compression encoding. We show that
such grouping can be learned via end-to-end optimization of the
codec and the deep learning (DL) model to optimize rate-accuracy
for a given data set. For cloud-based inference, source encoder
can select a coding profile based on its learned grouping and
encode the data features accordingly. Our test results on image
classification show that significant performance improvement
can be achieved with learned grouping over its non-grouping
counterpart.

Index Terms—Grouping, end-to-end encoding, classification.

I. INTRODUCTION

Deep learning applications on images and video data gen-
erated by distributed low end devices are continuously ex-
panding at a staggering pace. In such networked artificial
intelligence (AI) scenarios, low end devices such as roadside
cameras, vehicle sensors, and IoT devices are in charge of
data capturing before transporting them to cloud/edge servers
with high memory and computational capacity required for
executing machine tasks. Under limited (wireless) network
bandwidth, image/video data must be compressively encoded
for transport channels without sacrificing machine learning
(ML) task accuracy or visualization quality at the remote
end [1]–[3].

Another important consideration in deep learning is the re-
liability of training data. Inference performance of supervised
learning tasks such as image classification, object recognition,
and segmentation, depends critically on the accuracy of la-
beled data available for training [4]. Training samples can be
mislabelled due to human errors and occasional corruptions
during transmission and storage. Hence, an equally important
problem in distributed ML is to learning algorithms, robust to
training mislabels [5].

Recently developed image/video codecs based on deep
learning often feature an auto-encoder structure [6]–[8]. The
encoder maps the high dimensional (RD) input manifold/space
of high complexity to a low dimensional (Rd) latent represen-
tation. Key features of the latent representation are acquired
from end-to-end optimization including the codec and media

processing model. This work addresses both aforementioned
problems and optimizes the latent representation for efficient
encoding and effective ML.

We organize the paper as follows. In Section II, we review
a recent proposal of Maximal Coding Rate Reduction (MCR2)
principle of latent optimization in supervised learning and
its robustness to mislabeled training data. We build a direct
connection of MCR2 with efficient latent encoding for trans-
mission in the distributed deep learning paradigm. We propose
an end-to-end optimization of networked image classification
system by leveraging the concept of data grouping in MCR2

in Sec. III. Finally, we present test results on CIFAR-100 and
ImageNet-1K (size 32) data sets in Sec. IV.

II. BACKGROUND AND RELATED WORKS

Let X = [x1,x1, · · ·xm] ∈ RD×m be m i.i.d. samples of
dimension D. An encoder f(·,θ) parameterized by θ maps
each sample x to a d-dimensional (d < D) learned representa-
tion z such that z = f(x,θ). We write the set of latent vectors
mapped from set X as Z = [z1, z2, · · · , zm] ∈ Rd×m.

x
Encoder−−−−→
f(·,θ)

z(θ)
Channel−−−−→ ẑ(θ)

Classifier−−−−−→
g(.,φ)

y (1)

Source device uses entropy coding to encode z for trans-
mission. The receiver decodes the code words to obtain
reconstructed ẑ. An ML task model g(·,φ) with parameters
φ generates the output label y = g(ẑ,φ) based on ẑ.

A. Non-asymptotic rate-distortion with multiple groups

The authors of [9] provided a tight upper bound on the
number of bits required to encode X in a subspace. For a
Gaussian channel with distortion ε2, defined as the `2-norm
of reconstruction error, the mean code length per sample (for
large m) is [9]:

r(Z|ε) =
1

2
log2 det

[
I +

d

mε2
ZZ>

]
bits. (2)

This result requires Z to be within the same d-dim sub-
space. Partition Z into k disjoint subsets (groups) based on
features: Z = Z1 ∪ · · · ∪ Zk. The grouping of Z can be
denoted by a membership set Π of binary diagonal matrices
{Π1, · · · ,Πk} ∈ Rm×m with

∑k
i=1 Πi = Im. Each group
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has size tr(Πj). For this case, [9] similarly provided a tight
upper bound of average rate (bits per sample) when m� d:

rc(Z|ε,Π) =

k∑
j=1

tr(Πj)

2m
log2 det

[
I +

d ·ZΠjZ
>

tr(Πj)ε2

]
(3)

B. Maximal coding for rate reduction (MCR2)

To find good a representation of Z(θ) = f(X,θ), the
MCR2 principle of [10] maximizes the loss function of

∆r(Z(θ)|ε,Π) = r(Z(θ)|ε)− rc(Z(θ)|ε,Π). (4)

As shown in [10], the first term of (4) measures the code length
for all features in Z whereas the second term is the sum code
length of features in each of the k groups, Treating z as the
output of the final feature layer in MCR2, [10] used a simple
subspace classifier after applying true class labels to generate
the membership set Π. This MCR2 classifier is robust against
mislabeled images during training.

C. MCR2 and Latent Encoding

Cloud-based deep learning (DL) applications involve low-
end devices to capture images and videos for encoding and
transmitting to powerful computing nodes to carry out learn-
ing. To reduce power and bandwidth consumption, it is vital to
efficiently encode the latent Z by minimizing rc(Z(θ)|ε,Π)
for transmission.

Instead of only minimizing ∆r(Z(θ)|ε,Π) as in MCR2,
the need to improve code efficiency by constraining
rc(Z(θ)|ε,Π) is practically significant. In fact, maximizing
the MCR2 objective in Eq. (4) does not necessarily guarantee
to reduce rc(Z(θ)|ε,Π). In this work, we focus on the
dual objective of achieving robustness against mislabeling and
reducing the rate rc(Z(θ)|ε,Π) of efficient latent encoding by
leveraging the grouping information.

D. Latent Compression in View of Grouping

Several previous works utilized grouping for better rate-
distortion performance in image/video compression [11]–[13].
The authors of [11] proposed dividing videos into clusters,
each with distinct encoding profile in video compression for
transmission. For image compression, the authors of [13] pro-
posed to encode highly correlated images together to improve
overall compression ratio. Similarly, we explore the benefits
of the grouping to extract compressive features for a given DL
task under bandwidth constraint.

Optimizing image/video compression codecs for a given
task is an active area of research. Some recent works [1]–
[3] showed promises by jointly optimizing the codec and DL
model including the entropy coding parameters. Since the
learned representation Z is not unique, the encoder θ and task
model φ can be end-to-end optimized for a learning objective
such as classification or segmentation.

Grouping information helps generate membership set Π.
Candidates for grouping information include ground truth
labels, coarse labels and tags (metadata), depending often on
the learning task. For instance, in hierarchical classification,

Fig. 1. Proposed framework. During inference, for input image x, the encoder
generates a profile index j and the feature vector z. Then, the encoder profile
of Cj encodes z to a bit stream with entropy H(z|j).

coarse labels have shown benefits for improving classification
accuracy [14], [15]. Similarly, Metadata are less prone to
error compared to ground truth labels since accurate manual
labelling is not needed.

In practice, initial grouping information may not be avail-
able at acquisition or may not be a good candidate for a
given task. To be broadly accommodating, we propose that the
grouping be learned through unsupervised learning for end-to-
end optimization to achieve better rate-accuracy trade-off. In
real time applications, source device can then select a pre-
trained coding profile per group based on the rate-accuracy
trade-off.

III. PROPOSED END-TO-END FRAMEWORK

Our proposed framework in Fig. 1 consists of an encoder,
a set of coding profiles, and a task model (e.g. an image
classifier). Encoder maps image x to a low-order latent vector
z and generates a group label j ∈ {1, 2, · · · , k}, referred
to as the “profile index”. This profile set has k different
encoding-decoding profiles {Cj}k1 , each of which is optimized
to compress latents with profile index j. For image encoding, a
profile may typically consist of a quantizer, an entropy coder,
an entropy decoder and an optional de-quantizer. Classifier
uses the decoded latent ẑ as input for classification into c
classes with c ≥ k.

During training of the end-to-end architecture, parameters
of the encoder, coding profile, and the classifier are jointly
optimized. The optimized encoder and decoder profiles are
stored at the source and the cloud nodes, respectively. During
inference phase, the source encoder determines the profile
index j for the input image x and generates the feature vector
z. Next, the encoder uses profile Cj to encode z into bit
stream for transmission to the classifier node on cloud/edge.
The classifier decodes the received bit stream based on profile
Cj to recover the feature vector ẑ for subsequent classification.

A. Rate under Quantization Noise

Quantization is the primary source of rate reduction in both
commercial [16] and recent DL based image/video codes [6],
[8]. Hence, we model the wireless channel with quantization
noise n ∈ Rd as follows. Let z ∈ Rd be the recovered vector
from the quantized vector ẑ ∈ Rd. Then it is clear that ẑ =
z − n. Following previous works [2], [6], for quantization
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(a) Encoder (b) Classifier

Fig. 2. Encoder and classifier architectures used for CIFAR-100 (c = 100)
and ImageNet-1K (c = 1000). Number of filters of the last ResNet block of
the encoder are h = 16, 12 for hidden sizes d = 1024, 768, respectively.
“Conv 16 (3x3-2)” represents a 2D convolution block with 16 filters of size
3×3 and stride of 2. “Res 16 (3x3-2)” represents a basic ResNet block [17]
with down-sampling factor 2.

step s, elements of n can be modeled as independent, zero
mean, and uniformly distributed in [−s/

√
d, s/
√
d]. Hence,

the distortion ε from quantization noise forms an upper bound
of reconstruction error:

E[||z − ẑ||2] ≤ ε2 =
(2s)2

12
(5)

Following [9], we can derive an upper bound for the rate at
a given distortion ε using the “sphere packing” principle [18]
in information theory. To begin, estimate covariance matrix

Σ̂ = E[
1

m

m∑
i=1

ẑiẑ
>
i ] =

1

m
ZZ> +

ε2

d
Id. (6)

The volume spanned by the vectors ẑ is upper-bounded by the
volume of vectors with Gaussian density of same covariance.

vol(Ẑ) ≤
√

(2πe)d det Σ̂ (7)

Similarly, the volume spanned by the uniform noise is

vol(N) =

(
2s√
d

)d
=

√
det

(2s)2

d
Id. (8)

The number of bits to represent each vector z satisfying the `2-
error bound ε2 can be found as the number of bits to represent
the index of a sphere spanned by uniform noise, packed in the
region spanned by Σ̂. Therefore, we express an upper bound
for average rate of a sample z in bits at a distortion ε under
uniform quantization noise as

r(Z|ε) =
1

2
log2 det

[
I +

d

mε2
ZZ>

]
+
d

2
log2

[
2πe

12

]
.

(9)

Note that the rate depends only on singular values of Z.
Compared to the rate under Gaussian noise given in Eq. (2),
the upper bound for the rate under quantization noise only has
an additional linear term of d.

B. Learning to Group
Similar to Sec. II-A, the set Z can be partitioned to k sub-

sets Z1 · · ·Zk according to a membership set Π of diagonal
matrices {Π1, · · · ,Πk} ∈ Rm×m. Each diagonal element of
Πj(i, i) denotes the probability of sample i belonging to group
j. Note that each sample can only belong to one group [9]:

Πj(i, i) = πij ∈ [0, 1],
∑k
j=1πij = 1.

Group j contains mj = tr(Πj) samples. Similar to Eq. (3),
for m � d, an upper bound for average rate for the given
grouping Π can be written as

rc(Z|ε,Π) =

k∑
j=1

tr(Πj)

2m
log2 det

[
I +

d

tr(Πj)ε2
ZΠjZ

>
]

+
d

2
log2

[
2πe

12

]
. (10)

From (10), an optimal grouping Π∗ can be learned to
minimize the average rate-distortion for each sample z. Thus,
we formulate a rate minimization problem for given distortion
ε:

Π∗ = arg min
Π

rc(Z|ε,Π) (11)

We extend this rate minimization to an end-to-end optimization
problem in conjunction with a learning task. Consider image
classification using model g(·,φ) that takes the reconstructed
vector ẑ as the input and generates output label y = g(ẑ,φ)
as shown in Eq. (1). We propose to learn Π∗ via end-to-
end optimization of encoder f and learning model g. For this
purpose, we minimize the following loss function.

Π∗,θ∗,φ∗ = arg min
Π,θ,φ,ε

E[L(y, ygt)] + λ · rc(Z|ε,Π) (12)

L(y, ygt) denotes the classification cross entropy loss be-
tween the inferred class label y and the ground truth label
ygt. Here, the first RHS term of Eq. (12) is the average
classification loss. λ is the Lagrangian to manage the trade-
off between the rate and task accuracy [2], [3], [19]. θ∗

and φ∗ denote the learned encoder and classifier parameters,
respectively.

We also propose to make the distortion variable ε trainable.
This relaxation enables encoder more degree of freedom to
adjust rate and shifts the role of controlling rate of latent
vectors to parameter λ. On the other hand, since ε is related
to the quantization parameter s, this allows the network to
optimize the quantization interval as well.

IV. EXPERIMENTS AND RESULTS

In this section, we describe the experimental setup and
present test results from CIFAR-10 [20], CIFAR-100 [21] and
ImageNet-1k [22] data sets. CIFAR-10 consists of 10 classes
with 5000 training and 1000 test RGB images of size 32×32
per class. ImageNet-1k (size 32) consists of 1000 classes,
each containing up to 1300 training images and 50 validation
images resized to 32×32. Similar to CIFAR-10, CIFAR-100
data set contains 50k training and 10k test RGB images of
size 32×32 in 100 classes.
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(a) CIFAR-100 (b) ImageNet-1k (size 32)

Fig. 3. Rate-accuracy performance for CIFAR-100 (d = 768) and ImageNet-1k (d = 1024) data sets under quantization noise.

A. DL Network Architectures

Fig. 2 describes the encoder and classifier architectures in
use. To generate the profile index j, we used a simple fully-
connected layer with k nodes and assigned the index of the
largest node as j.

For experiments that include a bandwidth/rate constraint, we
initialized the training of end-to-end encoder-classifier frame-
work shown in Fig. 1 by using pre-trained models, trained
without a rate constraint, i.e., pre-trained models that were
optimized for classification only. In CIFAR-10 and CIFAR-
100 training, we fine-tuned the model using a “stochastic
gradient decent” optimizer with a initial learning rate of 0.05.
We reduced the learning rate each time by ×0.1 at 10, 20,
and 30 epochs until termination at 40 epochs. Similarly for
ImageNet-1k (size 32), we used the same optimizer starting
from a learning rate of 0.05, reduced each time by ×0.1 at 5
and 10 epochs, respectively, until termination at 15 epochs1.

B. Quantization Noise Emulation

We added random uniform noise to the vector z to generate
ẑ as the input to the classifier according to Sec. III-A.
Following the work [2], we applied rounding function during
the forward pass of the training and no quantization during
the backward pass to approximate the loss function gradient.
Consider an element z of the vector z. We can write the
differentiable quantization operation that maps z to quantized
ẑ in Pytorch as

ẑ = torch.round(
z

S
)× S − z.detach() + z, (13)

where S = 2s/
√
d is the stepsize in this implementation.

Fig. 3 provides the results under quantization noise for
CIFAR-100 and ImageNet-1k (size 32) data sets respectively
for 10 and 20 coding profiles. We record the rate in bits
per pixel (Bpp). With 20 learned coding profiles CIFAR-100

1Source code is given at https://github.com/chamain/Learning-to-group.

shows over 3.5% classification accuracy improvements over
no grouping at 0.295 Bpp. Similarly, ImageNet-1k shows over
1% top-5 accuracy improvements at 0.525 bpp with 20 coding
profiles over no grouping. We further note that increasing the
number of coding profiles improves rate-accuracy tradeoff for
both data sets particularly at lower data rates.

C. Ablation Experiment: Distortion Learning

In this study, we test trainable distortion parameter ε. By
making ε trainable, we allow the network to optimize quanti-
zation stepsize s. To observe the benefit of trainable distortion
ε, we also generate rate-accuracy points by optimizing the
proposed framework for fixed ε values, as baselines. From
the results in Fig. 4, we see that trainable ε makes it easier
to change rate without having to set ε manually for each rate.
Further, trainable ε produces comparably good results to fixed
ε case.

Fig. 4. Learned distortion: Ablation results using CIFAR-10 (d = 1024) data
set without grouping (k=1).
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D. Gaussian noise

The performance gains achieved with the proposed grouping
and end-to-end optimization are consistent under Gaussian
noise. In this experiment, we added random Gaussian noise
to z to generate noisy ẑ as the input to classifier. To train the
network, we used the same function of Eq. (12) and updated
the rate term rc(Z|ε,Π) for Gaussian noise as in Eq. (3).
Considering practical applications, we fixed ε at 0.5 during
the training. For the encoder-classifier model, we used the
same optimizer, learning rates and scheduling as described in
Sec. IV-A.

Fig. 5. Rate-accuracy performance for ImageNet-1k (d = 1024) data set
under Gaussian noise.

For ImageNet-1k (size 32) data set, results from Fig. 5
confirms the rate-accuracy performance gains with the latent
dimensions d = 1024 for coding profiles of 10 and 20, respec-
tively. With 20 learned coding profiles, the proposed method
achieves over 2% top-5 classification accuracy improvement at
0.330 Bpp. We further note that these results of rate-accuracy
performance improvement are consistent with results from
quantization noise tests.

V. CONCLUSIONS

In this paper, we proposed a grouping-based end-to-
end compression and classification framework for distributed
learning involving low cost sensing devices. Based on CI-
FAR and ImageNet data sets, we observed considerable rate-
classification accuracy improvements with learned grouping
compared to no grouping case under quantization and Gaus-
sian noise cases. The achieved rate-accuracy gains with learned
grouping increase with number of grouping profiles at the
cost of higher encoder complexity. We further note that the
proposed architecture is computationally simple and easily
trainable. In future works, we plan to explore more effective
methods to accurately generate coding profile index. Equally
important is the work to define discriminative group labels that
are also simultaneously compressive.
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