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ABSTRACT

This paper presents a single hyperspectral image super-
resolution (HSI-SR) method based on the non data-driven
deep image prior approach, where the prior information of
the image is intrinsically learned through the weights and
the structure of a neural network. Precisely, we propose
a scheme composed of a sequence of independent and in-
terpretable deep-blocks, whose outputs are affected in the
back-propagation step not only by the general loss-function,
but also by a single loss-function, resulting in a scheme us-
ing multiple loss-functions. The internal architecture of each
deep-block consists of a low-rank decomposition with two
block-layers inspired by the linear mixture model, where the
spectral image is formed as the product between an abundance
and an endmember matrix, such that, the features of the first
block-layer and the weights of the second block-layer can be
interpreted as the abundances and the endmembers, respec-
tively. In the experimental section, we showed the remarkable
performance of the proposed HSI-SR method concerning the
extensive reviewed state-of-the-art approaches.

Index Terms— Neural networks, Deep image prior, Low-
rank approximation, Hyperspectral image super-resolution.

1. INTRODUCTION

Single hyperspectral image super-resolution (HSI-SR) recov-
ery technique addresses the spatial-spectral tradeoff of current
optical devices, that acquire a limited amount of incident en-
ergy when sensing HSIs with dozens or hundreds of narrow
spectral bands, sacrificing spatial resolution. For this, HSI-SR
methods aim to infer a high-spatial-resolution HSI (HR-HSI)
from the acquired low-spatial-resolution HSI (LR-HSI) with
no additional auxiliary images by exploiting the high spatial-
spectral correlations as prior information. Model-based opti-
mization methods incorporate such prior information through
hand-crafted regularizers as total-variation [1], sparse repre-
sentation [2], and low-rankness [3]. In contrast, deep learning
(DL)-based methods learn the prior information or the entire
decoder operator to model the relationship between the LR-
HSI and the HR-HSI through the training of a huge amount
of datasets [4, 5]. For instance, authors in [6, 7, 8] introduce

convolutional neural networks (CNNs) based on 3D filters
to better exploit the spatial-spectral correlations. Still, DL-
based methods can become impractical given the high cost
of acquiring several HSI training datasets [9, 10]. The re-
cent so-called deep image prior (DIP) approach showed that
the prior information can be embodied in the weights of the
neural network allowing to solve various inverse problems,
such as HSI-SR, in a non data-driven manner [11]. For in-
stance, [12] integrated DIP with 3D convolutions containing
higher low-level image information, [13] boosted DIP strat-
egy by adding explicit regularization, and [14] provided an
evolutionary strategy to automatically search for the optimal
hyper-parameters of the DIP architecture.

Previous DIP-based methods for HSI-SR commonly em-
ploy a standard loss-function of the output of the model. Con-
trary, we propose a DIP-based HSI-SR method that incor-
porates the idea of using multiple loss-functions associated
with multiple deep-blocks forming the deep architecture. This
multiple deep-blocks scheme considers that the deeper the
network, the finer the learned features estimating the spatial-
spectral correlations of HSIs. Besides, we propose each deep-
block to be interpretable in the sense that its internal structure
consists of two block-layers inspired by the linear mixture
model (LMM), where the outputs can be interpreted as a low-
rank approximation of the HR-HSI, decomposed as a matrix
product between, an endmember matrix containing the spec-
tral response of few independent materials in the scene, and
an abundance matrix including the fractional proportions of
the endmembers at each spatial location [15]. The proposal
then recovers the HR-HSI from the LR-HSI in a non data-
driven manner by including the prior information on the ar-
chitecture, where neither the abundances nor the endmembers
are known. Instead, at each deep-block, the features of the
first block-layer can be interpreted as the abundances, and the
weights of the second block-layer as the endmembers, where
some included regularizers consider the LMM constraints.

Simulations over datasets showed the effectiveness of the
proposed interpretable architecture for HSI-SR, even when
compared against data-driven methods. In particular, the im-
provement is obtained when using the sum of the single loss-
functions affecting the multiple deep-blocks, and the intrinsic
regularization by the neural network architecture.
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2. THEORETICAL BACKGROUND

2.1. Single Hyperspectral Image Super-resolution

Let f ∈ RN2
hL denote the vector form of an HR-HSI with

(Nh ×Nh) spatial pixels and L spectral bands. The LR-HSI
acquisition is given by the following forward linear model

flow = DBf+η, (1)

where flow ∈ RN2
l L stands for the observed LR-HSI, with

Nl×Nl spatial pixels, and L spectral bands; D ∈ RN2
l L×N

2
hL

denotes a spatial downsampling operator, where Nl =
(1/d)Nh, with d ∈ Z+ being a downsampling factor;
B ∈ RN2

hL×N
2
hL denotes a spatial blurring operator, and

η ∈ RN2
l L stands for added additive Gaussian noise.

2.2. Linear Mixture Model for Hyperspectral Images

The linear mixture model (LMM) states that natural scenes
contain a few number r � L of materials defined uniquely by
its spectral response. Then, the ith spatial pixel fi ∈ RL can
be modeled as fi = Eai, where E ∈ RL×r is an endmember
matrix, whose columns contain a unique spectral response,
and ai ∈ Rr is an abundance vector, containing the fractional
proportions of each endmember at the ith spatial pixel, for
i = 1, . . . , N2

h . Then, f can be low-rank decomposed as

f = (E⊗ IN2
h
)ā = Ēā, (2)

where ā ∈ RN
2
hr

+ = [aT1 . . . aTi . . . aT
N2

h
]T stacks the abun-

dances; Ē ∈ RN
2
hL×N

2
hr

+ encompasses the endmembers; IN2
h

refers to an identity matrix of sizeN2
h ; and⊗ denotes the Kro-

necker product, introduced to apply the endmembers along
the spatial pixels, maintaining a vector notation.

The LMM entails the physical constraints that a mixed
pixel has an entire composition, such that, the sum of non-
negative fractional proportions must be one, i.e. ai[a] ≥ 0,
and

∑r
a=1 ai[a] = 1,∀i. Also, since the endmembers con-

note light intensities they are non-negative [16].

3. PROPOSED SINGLE HYPERSPECTRAL
SUPER-RESOLUTION METHOD

The proposed idea is to find a deep model based on the low-
rank decomposition Ēā, such that, a super-resolved image
can be estimated. Then, the proposed HSI-SR scheme solves
the following optimization problem based on the DIP ap-
proach that considers the image prior information implicitly
through fitting the weights of a deep model given by

θ̂ ∈ argmin
θ

∥∥flow −DBMθ(f
0)
∥∥2
2
, (3)

where f̂ := Mθ̂(f
0) denotes the estimated HR-HSI, f0 ∈

RN2
hL denotes a bicubic interpolation taken from flow, given

as the input of the deep generator model Mθ(·) : RN2
hL →

RN2
hL, with θ as the adjustable deep parameters. Notice that,

although problem in (3) is based on a deep model, it only
requires the LR-HSI, flow, and the forward operators DB,
i.e, it is non data-driven. Precisely, we aim to capture the prior
information implicitly by proposing an adequate design of the
deep generative model, Mθ(·). For this, we determine the
architecture of the deep generative model to be composed by
a sequence of multiple interpretable deep-blocks, containing
two block-layers inspired by the LMM, so that, the kth deep-
block can be mathematically expressed as

Mθk(fk−1) = fk = EEk(Akθ(fk−1)), (4)

where Akθ(·) : RN2
hL → RN2

hr models the first block-layer,
referred to as the abundance block-layer, consisting of a CNN
that receives and properly filters the input to obtain an output
whose properties and dimensions should match for being in-
terpreted as the abundances. EEk(·) : RN2

hr → RN2
hL models

the fully connected second block-layer, referred to as the end-
member block-layer, consisting of an operator that performs
the matrix multiplication between the learned features in the
abundance block-layer ā, and the adjusted weights in the end-
member block-layer E, whose dimensions should match to be
interpreted as the endmembers according to the LMM in (2).

Then, the proposed deep model can be expressed as

Mθ(f
0) = f̂ =MθK (MθK−1(· · ·Mθ1(f0))), (5)

where θ = [θ1, . . . ,θk, . . .θK ] stacks the adjustable weights
of each deep-block, fk := Mθk(fk−1), with each fk using a
single loss-function as detailed in following sub-sections.

3.1. Abundance Block-layer

The abundance block-layer involves a CNN that filters and
operates the spatial dimension of the previous deep-block out-
put. This, given that the abundances entail the spatial corre-
lations of the underlying HSI. Mathematically, the output of
the abundance block-layer at the kth deep-block, interpreted
as the estimated abundances āk ∈ RN2

hr can be expressed as

āk = Aθk(fk−1). (6)

Notice that r denotes a tunable hyper-parameter related to the
amount of endmembers present in the scene. The abundance
block-layer is based on an autoencoder network, with six 2D
convolutional layers with kernel sizes of 3 × 3, where the
number of features increases symmetrically from L to 3L,
and then decreases to L. A value of L = 32 was chosen for
this work, where the spatial dimensions are preserved using
a padding strategy. The abundance block-layer also adds the
LMM physical constraints described in Section 2.2 by using
the sigmoid function as the activation of the network output
āk, and including an explicit regularization term in the loss-
function, R(āk) =

∑r
a=1 a

k
i [a] = 1, with ai[a] ≥ 0,∀i.
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3.2. Endmember Block-layer

The endmember block-layer consists of a trainable layer that
follows the LMM to adjust the underlying spectral responses
by performing a matrix multiplication between the output
of the previous abundance block-layer āk, and the learned
weights, in such a manner that these weights can be inter-
preted as the estimated endmembers at the kth deep-block.
Mathematically, the endmember block-layer is expressed as

fk = EEk

(
āk
)

= (Ek ⊗ IN2
h
)āk, (7)

This block-layer also includes the non-negative constraint de-
scribed in Section 2.2 by projecting the estimated endmem-
bers into R+ at each gradient step.

3.3. Multiple Loss-functions

In (3) the DIP-based approach applies the forward operators
DB at the output of the deep model to estimate the LR-HSI.
Then, the proposal employs such forward operators at the out-
put of each one of the multiple deep-blocks. Furthermore, we
propose adjusting each internal architecture weights to refine
the learned estimation as the block is deeper by minimizing
a single loss-function containing the loss from the difference
between the observed LR-HSI and the predicted LR-HSI of
each deep-block and the LMM physical constraints. The pro-
posal then solves the optimization problem given by

{θ∗} ∈ arg min
θ

∑
k

τkLk
(
Mθk(fk−1)| flow,DB

)
, (8)

Lk(fk| flow,DB) =
∥∥flow −DBfk

∥∥2
2

+ γk
r∑
a=1

aki [a] = 1,

where, τk > 0 index the weights of the single loss-function
of each deep-block, and γk > 0 denote the regularization
parameters that control the trade-off between the fidelity-data
and the abundance constraint. The output at each deep-block
can be interpreted as the estimated HR-HSI; nonetheless, the
average between the outputs of the last two deep-blocks were
chosen as the estimated HR-HSI to better consider the learned
features in the final estimations as, f̂ = (fK + fK−1)/2.

Figure 1 outlines our DIP-based HSI-SR method, where
the HR-HSI is estimated trough multiple interpretable deep-
blocks inspired by the LMM with two block-layers, each one
referring to the abundance and endmembers, respectively.

4. SIMULATIONS AND RESULTS

The conducted experiments employ two public available
datasets, the hyperspectral Pavia Center1, and the Stuff toys
image taken from the spectral CAVE dataset [17] for two
downsampling factors, d = 4 and d = 8. The Pavia Center

1Available in http://www.ehu.eus/ccwintco/. Accessed: 17-Feb-2021.
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Fig. 1: Proposed DIP-based single HSI-SR method. A bicubic in-
terpolation of the LR-HSI is used as the input f0 of a sequence of
deep-blocks shown at the top. The zoomed version of the kth deep-
block depicted at the bottom, where the architecture is composed
of the abundance block-layer, consisting in a CNN, and the end-
member block-layer performing the matrix product according to the
LMM. Finally, the general loss-function considers the sum of the
single losses employed by the multiple deep-blocks.

was acquired with the ROSIS sensor in 2001. It contains 102
spectral bands and 1096× 1096 spatial pixels, where the wa-
ter vapor absorption and noisy spectral bands were removed
from the original 115 observed spectral bands. We used one
sub-region of 224 × 224 spatial pixels for testing in concor-
dance to experiments in [6]. The CAVE dataset consists of 32
spectral images with 512× 512 spatial pixels, and 31 spectral
bands ranging from 400nm to 700nm at 10nm steps.

The performance of the proposal was compared against
several state-of-the-art methods, including the bicubic inter-
polation; four deep sinlge gray/RGB image SR methods,
EDSR [18], RCAN [19], and SAN [20]; four data-driven DL-
based single HSI-SR methods, 3DCNN [8], GDRRN [21],
and SSPSR [6]; and a non data-driven, DL-based method,
DIP [12]. Remark that the proposed method follows a non
data-driven framework. The optimization was solved using
the the Adam algorithm [22] with a learning rate of 1e−3,
all hyper-parameters γk set to 0.5, and a different value for
the rank, r in (6), and number of deep-blocks, K, for each
dataset through cross-validation. Precisely, we established
r = 6 and K = 3, and r = 12 and K = 4, for Pavia Center
and Stuff toys, respectively. All experiments were run on an
Intel Xeon W-3223, 64GB of memory, and a NVIDIA RTX
3090 GPU with 24GB of memory2.

The quality improvement is quantified through the spec-
tral angle mapper (SAM), the root mean squared error
(RMSE), the dimensionless global relative error of synthesis
(ERGAS), the peak signal-to-noise ratio (PSNR), and the

2The source code is publicly available in https://github.com/
TatianaGelvez/Interpretable_HSI_SR
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structural similarity (SSIM) metrics calculated as in [23, 24].
Tables 1 and 2 compare the quantitative results for the sin-

gle HSI-SR along the evaluated methods for the Pavia Center
and Stuff toys datasets, respectively. There, it can be seen that
our proposed non data-driven method outperforms or achieves

Table 1: Quantitative Results for the Pavia Center Dataset

Method d SAM↓ RMSE↓ ERGAS↓ PSNR↑ SSIM ↑
Bicubic 4 6.1399 0.0437 6.8814 27.5874 0.6961

EDSR 4 5.8657 0.0379 6.0199 28.7981 0.7722
RCAN 4 5.9785 0.0376 6.0485 28.8165 0.7719
SAN 4 5.9590 0.0374 5.9903 28.8554 0.7740

3DCNN 4 5.8669 0.0396 6.2665 28.4114 0.7501
GDRRN 4 5.4750 0.0393 6.2264 28.4726 0.7530
SSPSR 4 5.4612 0.0362 5.8014 29.1581 0.7903

DIP 4 6.2665 0.0410 6.4845 28.1061 0.7365
Proposed 4 4.2120 0.0352 5.8084 29.914 0.8396

Bicubic 8 7.8478 0.0630 4.8280 24.5972 0.4725

EDSR 8 7.8594 0.05983 4.6359 25.0041 0.5130
RCAN 8 7.9992 0.0604 4.6930 24.9183 0.5086
SAN 8 8.0371 0.0609 4.7646 24.8485 0.5054

3DCNN 8 7.6878 0.0605 4.6469 24.9336 0.5038
GDRRN 8 7.3531 0.0607 4.6220 24.8648 0.5014
SSPSR 8 7.3312 0.0586 4.5266 25.1985 0.5365

DIP 8 7.9281 0.0618 4.7366 24.7252 0.4963
Proposed 8 6.7855 0.0485 4.0015 26.9041 0.7148

Table 2: Quantitative Results for the Stuff toys Dataset

Method d SAM↓ RMSE↓ ERGAS↓ PSNR↑ SSIM ↑
Bicubic 4 4.1759 0.0212 5.2719 34.7214 0.9277

EDSR 4 3.5499 0.0149 3.5921 38.1575 0.9522
RCAN 4 3.6050 0.0142 3.4178 38.7585 0.9530
SAN 4 3.5951 0.0143 3.4200 38.7188 0.9531

3DCNN 4 3.3463 0.0154 3.7042 37.9759 0.9522
GDRRN 4 3.4143 0.0145 3.5086 38.4507 0.9538
SSPSR 4 3.1846 0.0138 3.3384 39.0892 0.9553

DIP 4 8.4935 0.0124 2.5358 38.1329 0.9631
Proposed 4 5.3285 0.0110 2.1997 39.1640 0.9821

Bicubic 8 5.8962 0.0346 4.2175 30.2056 0.8526

EDSR 8 5.6865 0.0279 3.3903 32.4072 0.8842
RCAN 8 5.9771 0.0268 3.1781 32.9544 0.8884
SAN 8 5.8683 0.0267 3.1437 33.0012 0.8888

3DCNN 8 5.0948 0.0292 3.5536 31.9691 0.8863
GDRRN 8 5.3597 0.0280 3.3460 32.5763 0.8890
SSPSR 8 4.4874 0.0257 3.0419 33.4340 0.9010

DIP 8 8.3342 0.0231 2.3697 32.7324 0.9291
Proposed 8 5.5027 0.0208 2.1061 33.6270 0.9432
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Fig. 2: Visualization of some learned features and adjusted weights
for d = 4. The output of each deep-block can be effectively inter-
preted as the endmembers E and the abundances ā.

competitive quality even against the data-driven methods such
as the SSPSR for both datasets, both downsampling factors,
and all evaluated metrics. Further, we remark that the ob-
tained spectral quality measured with the SAM metric re-
sults particularly improved for the hyperspectral Pavia Cen-
ter dataset. This, because of the low-rank prior can be better
exploited when there is a high number of spectral bands that
cause higher spectral correlations, which are taken into ac-
count within our interpretable deep-blocks. In order to see the
additional advange of the proposed inspired network, Fig. 2
depicts the obtained adjusted weights of the second block-
layer E, and the features of the first block-layer ā. There,
it can be observed that such outputs can effectively be inter-
preted as a set of endmembers and abundances, what becomes
in additional information that can be useful for further high-
level applications. Finally, Fig. 3 shows a visual comparison
of the RGB mapping of some super-resolved images for the
Pavia dataset, where the proposed method shows a better spa-
tial quality, particularly for high down-sampling factors.

5. CONCLUSIONS

This paper presented a single HSI-SR method based on the
non data-driven DIP approach, where the proposed deep
generative model is composed of multiple interpretable deep-
blocks. The internal architecture is further inspired by the
low-rank decomposition given by the LMM, such that, the
first block-layer involves a CNN whose output dimensions
match the abundances, and the second block-layer involves a
matrix product whose adjusted weights match the endmem-
bers. In addition, the general loss-function is composed by
the sum of multiple single losses affecting independently each
deep-block. The experiments showed that the proposal out-
performs state-of-the-art methods, even those data-driven. A
better performance was evidenced in images with many spec-
tral bands, where the low-rankness can be fully exploited.
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Fig. 3: RGB representation of the reconstructed composite images of Pavia datatest with upsampling factor d = 4 (top) and d = 8 (bottom).
Notice that, the spatial quality is especially improved for a factor d = 8.
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