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Abstract—This paper introduces Multiscale Anisotropic Har-
monic Filters (MAHFs) aimed at extracting signal variations
over non-Euclidean domains, namely 2D-Manifolds and their
discrete representations, such as meshes and 3D Point Clouds
as well as graphs. The topic of pattern analysis is central
in image processing and, considered the growing interest in
new domains for information representation, the extension of
analogous practices on volumetric data is highly demanded. To
accomplish this purpose, we define MAHFs as the product of two
components, respectively related to a suitable smoothing function,
namely the heat kernel derived from the heat diffusion equations,
and to local directional information. We analyse the accuracy
of our approach in multi-scale filtering and variation extraction.
Finally, we present an application to the surface normal field and
to a luminance signal textured to a mesh, aiming to spot, in a
separate fashion, relevant curvature changes (support variations)
and signal variations.

Index Terms—Multiscale Anisotropic Harmonic Filters, signal
on graph, non-Eucledian domains

I. INTRODUCTION

Signal and image processing tools, such as for instance
Fourier transform or wavelet, typically rely, implicitly or ex-
plicitly, on a measure of Euclidean distance in signal’s domain
[1], [2]. This metric is not significant on domains involved
in immersive multimedia systems to represent volumetric
data, namely 2D-manifolds and their discrete representations,
as meshes and 3D-Point Clouds (3D-PCs). On the other
hand, Signals (defined) on Graphs (SoGs) provide a powerful
and effective model for data defined on the aforementioned
supports [3]. Indeed, Graph Signal Processing (GSP) has
found application in all the branches of signal processing on
volumetric domains, for the purpose of dual description and
filtering [4], enhancement and restoration [5], compression [6],
and transmission [7].

In this paper, we present a novel filtering approach to ex-
tract signals variations on non-euclidean domains. Specifically,
we present a class of tools which we denote as Multiscale
Anisotropic Harmonic Filters (MAHFs), aimed at identifying
specific patterns (edges, forks) on textures manifolds. In
image processing, specific angular patterns are detected by
Circular Harmonic Filters (CHFs) [8], used for example in
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deconvolution [9] or interpolation [10], due to their invari-
ance and spectral properties. These properties are achieved
exploiting relevant information characterizing two pixels: i)
their distance, that allows to define smoothing kernels in the
radial variable, ii) the direction of the joining segment. The
radial function and the angular information are lead to sep-
arable CHFs. In MAHFs, radial and angular information are
tuned to non-Euclidean geometries. As far as the smoothing
function is concerned, we resort to the concept of heat kernel,
derived from the heat diffusion equations. On the other hand,
angles are measured using projections on the tangent plane, as
recently carried on in anisotropic or rotation invariant CNNs
on meshes [11], [12]. Vertex domain localized filtering has
been recently addressed in [13], [14].

MHF can be employed in content analysis, salient points de-
tection, shape classification, signal enhancement and adaptive
encoding.

To summarize, the main contributions here presented are: i)
the introduction of a novel approach for anisotropic filtering
on volumetric data, leveraging angular measures recently
introduced in geometry processing and Deep Learning on
manifolds; ii) the design of MAHFs, novel multi-scale filters
capable to extract signal variations on 3D-shapes; iii) the
application of MAHFs to spot local variations of the normal
field and luminance signals separately.

The organization of the paper is as follows: in Sec. II we
recall the basic elements to process signals on non-Euclidean
domains; in Sec.III we introduce MAHFs; in Sec.IV we exper-
imentally verify the accuracy of the method presenting several
applications on signals defined over real volume objects; Sec.V
concludes the paper.

II. SIGNAL PROCESSING ON NON-EUCLIDEAN DOMAINS

Let us consider a 2D manifold M embedded in a 3D
domain R3, usually referred as 3D-shape, and a scalar signal
on the manifold u(p),p = (x, y, z)∈M, which can represent
information as intensities or direction components. Classical
signal processing tools can be re-defined on manifolds under
suitable smoothness hypothesis. In particular, considering the
set of eigenfunctions χs :M→ R and eigenvalues λs of the
Manifold’s Laplace-Beltrami Operator (LBO) ∆, it is possible
to define a basis for a transform, the so called Manifold
Harmonics [1], [15]. The same procedure, by discretizing the
LBO, can be accomplished for signals defined over discrete
3D-shapes, namely 3D-PCs and meshes. The latter ones can
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be considered piece-wise approximations of a manifold, com-
posed by triplets (V, E ,F), where V ⊂ R3×N collects the
vertices set, also referred as 3D-PC, while F ⊂ V ×V ×V
(i.e. triangles) and E ⊂V ×V collect faces and edges.

GSP provides an effective framework to process signal
defined over manifolds’ discrete representation [4]. In GSP,
the signal domain is a graph, defined as G = (V, E), where
V denotes the set of vertices vi, i = 1, . . . , N , and E the
set of edges eij , associated with a real weight wij . Let us
denote as W= {wij}Ni,j=1 the N × N real matrix collecting
all the edge weights, known as the graph adjacency matrix.
The Graph Laplacian (GL) is defined as L=D−W,1 where
D is the diagonal degree matrix, having dii =

∑N
j=1 wij , for

all i = 1, . . . , N . The GL’s eigenvectors form a basis for a
Fourier-like transform [16].

Given a mesh or a 3D-PC, the GL obtained using weights
properly defined according to geometrical and/or topological
information corresponds to a LBO discretization. As far 3D-
PCs are considered [5], [17], weights are commonly defined
with Gaussian functions of the Euclidean distance between
k-Nearest Neighbor points, exploiting only the geometri-
cal information. Differently, concerning triangular meshes
[4], the weights wij associated to the edge eij connecting
i and j are defined leveraging also topology as wij =
(cotαij + cotβij) /2Ai, where αij and βij denote the angles
opposite to ei,j , while Ai is the estimated area of the triangles
adjacent to the vertex i [18]. The above elements provide
the ground to extend signal processing tools in all the non-
Euclidean domains. A relevant example of this extension is
the definition of the Spectral Graph Wavelet Transform [19]
on volumetric data [4].

III. MULTISCALE ANISOTROPIC HARMONIC FILTERS

Herein, we introduce our novel Multiscale Anisotropic
Harmonic Filters aiming to extract variation of signals defined
over continuous and discrete manifolds. Anisotropic filtering
and signal variations detection have been largely researched
in image processing and, as a significant example, we refer to
CHFs [9], [10]. Consider an image, modeled on a continuous
domain by a real function f(x, y); using the polar represen-
tation, a CHF of order k is a complex filter whose impulse
response in polar coordinates is defined as [9]:

ψ(k)(r, θ) = wk(r)ejkθ (1)

where the dependence from the radial and the angular compo-
nents are separated. The functions wk(r) are typically chosen
as isotropic Gaussian kernels in the variable r. For increasing
k, CHFs are known to highlight image structures of increasing
complexity, as edges (k = 1), corners (k = 2), forks (k = 3)
and crosses (k = 4) [9]. In particular, filter output’s module
is expressive of structure intensity, while the phase contains
information about directionality. Further, a scaling factor α
allows to define a multi-resolution analysis, composing a
Circular Harmonic Wavelets (CHWs) basis [8].

1Alternative definitions use different normalizations and symmetry [16]

(a) t=5s (b) t=25s

(c) t=50s (d) t=100s

Fig. 1. Heat Kernel on a sphere, decaying as a Gaussian function as much
smooth as t increases

Inspired by CHFs, in order to introduce our novel manifold
filters, we need to establish: 1) a smoothing kernel replicating
the isotropic Gaussian smoothing on a 2D-manifold; 2) an
angular measurement θ on the manifold surface.

A. MAHFs on Manifolds

We firstly introduce MAHFs on a continuous shapeM with
LBO ∆. As concern the smoothing kernel, we refer to the heat
kernel [1], [20], the fundamental solution of the heat equation:

∆u(p, t)=−∂tu(p, t), u(p, t=0)=u0(p)

where u(p, t), p∈M, t∈R+ denotes the solution starting from
an initial condition u0(p). When the initial condition consists
in an impulsive function u0(p)=δ(p−p0) concentrated in p0,
the solution is therefore indicated as heat kernel and denoted
as Kt(p,p0), describing the heat diffused from p0 to p after
t(sec). Referring to the eigenfunctions χs : M → R and
eigenvalues λs, the heat kernel can be expressed as:

Kt(p,p0)=

∞∑
s=0

e−tλsχs(p)χs(p0) (2)

As far a general u0(p) is considered, we can express the
solution of (3) as the convolution in the eigenfunction domain
with the heat kernel [18]:

u(p, t)=(Kt ∗ u0) (p)=

∞∑
s=0

e−tλs û0(s)χs(p) (3)

where û0 is the representation of u0 in the manifold eigen-
function basis. The heat kernel is known to define an isotropic
smoothing function on M, decaying as a Gaussian function
and more smoothly with increasing t [21], as can be appre-
ciated in Fig.1 concerning a spherical 3D-shape, paving the
ways to multi-scale analysis. Additionally from (2)-(3), we can
deduce the Fourier representation K̂t(s) = e−tλs , namely
a Gaussian function in the frequency domain expressed wrt
the frequency-like variable

√
λs, supplying the isomorphic
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Fig. 2. Angles measurement on a discrete manifold M

property between the two domains. These important properties
can be exploited to define diffusion wavelets [22] on manifolds
and graphs, based on the concept ”to scale is equivalent to
diffuse”; moreover, the kernels’ derivatives with respect to the
variable t are exploited in Computer Graphics communities
to define the Mexican Hat Wavelets (MHWs) [20], [21],
inherently isotropic filters mainly used in shape matching and
geometry processing. MHWs 2D-filters are widely applied in
image processing for edge detection and thus will be taken as
comparison in Sec. IV.

As concern angles, different definitions have been proposed
in the context of CNNs generalization on manifolds in an
anisotropic fashion (mainly limited to meshed domains and
not 3D-PC). More in details, local geodesic polar coordinates
[23] are defined in meshed domains using angular bins. On the
other hand, alternative approaches use logarithmic mapping to
the tangent plane [11], [12], namely a representation of points
on the plane TpM tangent to the manifold in p, thus allowing
an extension also to 3D-PCs. Similarly to the latter paradigm,
we define δθ(p; p0) as the azimuth in spherical coordinates
of p, measured wrt a frame system (x′, y′, z′) centered at
the point p0 and with the z′ axis directed with the surface
normal np0 at the point. Subsequently, the axes x′ and y′ are
arbitrarily chosen on the tangent plane. Note that this choice
has no effect in filtering, since the variations are extracted on
two orthogonal directions, as discussed in the following.

At this point, inspired by (1), we define the MAHFs of order
k around a point p0 ∈M as a function ψ :M×M→ R2:

ψ
(k)
R (p; p0)=Kt(p,p0) cos (kδθ(p; p0)),

ψ
(k)
I (p; p0)=Kt(p,p0) sin (kδθ(p; p0));

(4)

B. MAHFs on graphs

We now move to MAHFs’ definition for signals on discrete
domains, namely meshes or 3D-PCs, represented by graphs
G = (V, E) with the GL matrix L ∈ RN×N , whose N eigen-
pairs ϕs and λs determine the Graph Fourier decomposition.
In the discrete settings, we refer to the heat kernel considering
the whole spectrum [24]:

Kt[vi, vj ]=

N−1∑
s=0

e−tλsϕs[vi]ϕs[vj ] (5)

The use of all the eigenpairs is computationally impractical
for large N ; for this reason, Chebyshev polynomial approxi-

(a) k = 0 (b) k = 1

(c) k = 2 (d) k = 3

Fig. 3. MAHFs on a sphere, t=50s for increasing k; the anisotropic behavior
resembles CHFs’ action on images

mations are commonly used to evaluate (5) as a polynomial in
the variable L (see for instance [18], [25]). It is worth to note
that, referred to the multi-scale approach, the heat kernel for
different t values can be conveniently evaluated in a recursive
manner Kt1+t2 =Kt1 ∗Kt2 [18]. Additionally, [20] relates the
parameter t to the global area of the discrete manifold M in
multi-scale analysis.

As concern angles, also in the discrete setting we refer to
the azimuth angle measured on the tangent plane to the vertex
vi. More in detail, we arbitrary choose 2 directions (x′, y′)
orthogonal to the normal ni, 2 as shown in Fig.2.

Finally, the real and imaginary part of MAHFs on a graph

h
(k)
R [i, j] = Kt[vi, vj ] cos(kδθi,j),

h
(k)
I [i, j] = Kt[vi, vj ] sin(kδθi,j)

(6)

When applied to signals defined over discrete manifolds,
MAHFs provide a differential computation to extract features
with higher complexity as k increases, resembling the typical
behavior of CHFs on images. This is illustrated in Fig.3, where
MAHFs in (6) are reported for different values of k on a sphere
with a fixed t = 50s.

Starting from the classical definition of graph vertex filter-
ing, we now introduce the application of MAHF to signals
s[i], i = 0, . . . N − 1 defined over graphs vertices vi, i =
0, . . . N − 1. Let us denote by rR[i], rI [i] i = 0, . . . N − 1 the
output signal, which is computed as follows:

rR[i] =
∑
j

h
(k)
R [vi, vj ]s[j], rI [i] =

∑
j

h
(k)
I [vi, vj ]s[j] (7)

We further underline that Kt[vi, vj ] defines a patch on the
graph, so that the filtering in the vertex domain, though
formally extended over the whole graph, can be efficiently
accomplished by using only the localized support determined
by thresholding the kernel. As described for images, the square

2We underline that normal vectors could derive from scanning or, alterna-
tively, could be estimated both for meshes and 3D-PCs.
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module of the output components R2[i]=r2R[i]+r2I [i] is able to
capture local variability behaviors of the signal on its support.
In addition, we remark that consistent angular information
could be recovered using the local reference frame (previously
arbitrarily selected).

IV. APPLICATION OF MAHF TO VOLUMETRIC DATA

Herein, we presents three MAHFs applications aiming to
demonstrate: i) signal variations detection and multi-scale
behavior; ii) Normal field’s local variation estimate, providing
a comparisons with MHWs [20]; iii) edge extraction for an
image textured on a face shape.

Firstly, we account a simple two levels signal defined on a
triangular mesh representing the Stanford Bunny [26] (see Fig
4a). At this stage we have used t=5s and k=1, Fig.4b shows
the output R2[i], proving the accuracy of the filters in capturing
the variability of a simple signal. After that, we explain the
multi-scale behavior by defining a test signal on the surface
(see Fig.5a) and filtering with two different t values, t1 = 5s
and t2 = 30s. Taking into account the filter supports depicted
in Fig.1, it is easy to understand results reported in Fig.5b and
Fig.5c: when a low-scale parameter t is used, the filters are
unable to detect spatially diffuse variability; conversely, wider
support filters are suited to detect diffuse variations and not
steep ones. This behavior paves the way towards multiscale
pattern analysis.

As a second demonstration, we aim to spot surface’s local
curvature changes, therefore we filter separately the normal
components np = [n

(x)
p , n

(y)
p , n

(z)
p ] in a small scale fash-

ion (t = 10s). Fig.6 provides respectively the input signals
and the corresponding results [R2

x[i], R2
y[i], R2

z[i]], confirming
again the capability in variation extraction. Thus, in Fig.7a
we aggregate the separated normal components’ variation
as R2

N [i] = R2
x[i] +R2

y[i] +R2
z[i], in order to spot global

curvature changes. To further assess the performance, we
repeated the filtering operation of normal’s components using
MHWs [20], [21] with the same scale factor (t=10s), hence
we aggregate again the results summing the squares of the
filtered components. Fig.7b shows the comparison, pointing
out that our method is more suitable for edges detection, as
can be seen around the neck, on the snout and in the bottom
part of the legs, on which the normal field exhibits a large
variation, correctly detected by our approach (Fig.7a) but not
by the MHWs (Fig.7b).

Finally, we apply MAHFs to signals defined over faces
(presented FIDENTIS 3D Face Database [27]) represented as
a meshed surface in Fig.8a. Firstly, we repeat the procedure
to evaluate the normal field variation R2

N [i], results are pre-
sented in Fig.8b. Then we move to the definition of a signal
obtained texturing an image on the mesh vertices, shown in
Fig.9a. Filters’ square module output R2

L[i] is presented in
Fig.9b: we emphasize how luminance variations, such as those
present on the pupils and lips, are highlighted, while nose
and ears not, since the luminance has a constant value on
these areas, on which variations are due to normal field rather
than colours, and therefore they are correctly highlighted in

(a) Input signal (b) Output Signal R2[i]

Fig. 4. MAHFs applied on a 2 levels signal

(a) Input Signal

(b) t=5s (c) t=30s

Fig. 5. Multiscale Analysis: signal filtered with two different t values.

8b. We emphasize how extracting information in a separate
fashion can strengthen future applications with respect to
different degradation on position or luminance. Hence, some
applications could benefit from a fusion R2

L[i] + βR2
N [i]

between the two results, presented in Fig.10.

V. CONCLUSION AND FUTURE WORKS

In this work we have introduced Multiscale Anisotropic
Harmonic Filters (MAHF) for analysis of signals defined
on manifolds and on their discrete representations. MAHFs
leverage heat diffusion equations and angular metrics recently
appeared in different scientific communities. We have applied
MAHF to extract visually relevant information on volumetric
data in a multiple scale fashion. Future work is needed to
gain insight about MAHFs’ spectral properties, and their
application in pre- post-processing stages.
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based heat kernel derivatives: Towards informative localized shape
analysis,” Computer Graphics Forum, 2020.

[21] T. Hou and H. Qin, “Continuous and discrete mexican hat wavelet
transforms on manifolds,” Graphical Models, vol. 74, no. 4, pp. 221
– 232, 2012, gMP2012.

[22] R. R. Coifman and M. Maggioni, “Diffusion wavelets,” Applied and
Computational Harmonic Analysis, vol. 21, no. 1, pp. 53 – 94, 2006,
special Issue: Diffusion Maps and Wavelets.

[23] J. Masci, D. Boscaini, M. M. Bronstein, and P. Vandergheynst,
“Geodesic convolutional neural networks on riemannian manifolds,” in
2015 IEEE Int. Conf. on Computer Vision Workshop (ICCVW), 2015,
pp. 832–840.

[24] A. Bronstein, M. Bronstein, R. Kimmel, M. Mahmoudi, and
G. Sapiro, “A gromov-hausdorff framework with diffusion geometry
for topologically-robust non-rigid shape matching,” Int. Journal of
Computer Vision, vol. 89, pp. 266–286, 09 2010.
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