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Abstract—The number of applications that use depth imaging
is rapidly increasing, e.g. self-driving autonomous vehicles and
auto-focus assist on smartphone cameras. Light detection and
ranging (LiDAR) via single-photon sensitive detector (SPAD)
arrays is an emerging technology that enables the acquisition of
depth images at high frame rates. However, the spatial resolution
of this technology is typically low in comparison to the intensity
images recorded by conventional cameras. To increase the native
resolution of depth images from a SPAD camera, we develop a
deep network built to take advantage of the multiple features that
can be extracted from a camera’s histogram data. The network
then uses the intensity images and multiple features extracted
from down-sampled histograms to guide the up-sampling of
the depth. Our network provides significant image resolution
enhancement and image denoising across a wide range of signal-
to-noise ratios and photon levels.

LiDAR waveform, Guided Super-resolution, Deep network,
Unet, robust reconstruction

I. INTRODUCTION

Light detection and ranging (LiDAR) is a leading technol-
ogy for depth imaging. For example, LiDAR is one of the key
systems for future connected and autonomous vehicles, and it
is used in the latest smartphones and tablet to aid auto-focus
assist and enhance virtual reality. Single-photon avalanche
detector (SPAD) arrays are an emerging technology for depth
estimation via LiDAR. These devices can capture depth and
intensity information of a scene. To achieve this, a short laser
pulse is used to illuminate a target, and the detector records
the arrival time of photons reflected back by the scene with
respect to a laser trigger. This data, known as time tagged data,
can be used to generate a temporal histogram of counts with
respect to the time of flights, where the peak in the histogram
can be used to calculate the distance to the target.

Although SPAD arrays are becoming well established in
LiDAR systems, there are several key challenges to overcome
to fully exploit their potential. The single-photon sensitivity
that the SPAD array provides, promises depth imaging at
long ranges [1]–[3] and in degraded visual environments [4]–
[6], but improving the performance in these scenarios can
dramatically increase the use of the detectors in different
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applications. In addition, the native resolution is typically very
low in comparison to conventional image sensors. Ultimately,
it is desirable to operate the SPAD arrays at high frame rates,
cover a large field-of-view at large distances, produce images
at high resolutions, and perform well in a wide range of
environmental conditions.

Due to the nature of the challenges in single-photon depth
imaging, computational post-processing techniques are known
to be a very powerful method to improve the overall image
quality, both in terms of signal-to-noise and resolution. Statis-
tical methods reported in [7]–[9] take advantage of available
prior information to do robust reconstruction in the low-photon
regime. Machine learning approaches have also shown good
performance for super-resolution applied to all kind of depth
images [10] or specialized on single-photon data [11], [12].

This paper proposes and implements a machine learning
network that performs robust depth estimation by exploiting
multi-scale information. The algorithm is insensitive to the
number of time bins of the raw data, and achieves guided
up-sampling based on corresponding intensity. We design and
apply the network so that it is suitable for the data provided by
the Quantic 4x4 sensor [13]–[15]. After processing, the final
resolution of our up-sampled depth images from the Quantic
4x4 sensor is increased by a factor of four, i.e., from 64x32
to 256x128 pixels.

This paper is organized as follows. Section II introduces
the observation model and the classical depth estimation
procedure. Section III introduces the proposed HistNet in
details. Results and comparisons on simulated and real data
are reported in Sections IV and V, respectively. Section VI
presents our conclusions and future work.

II. OBSERVATION MODEL

A. Observed Data

In this work, we develop a network to process the data of
the Quantic 4x4 SPAD array sensor, which generates the his-
tograms of counts on-chip and operates in a hybrid acquisition
mode [14], [15]. The Quantic 4x4 camera alternates between
two measurements modes at a temporal rate exceeding 1000
frames per second : a high-resolution (HR) intensity measure-
ment with a spatial resolution of 256x128, and a low-resolution
(LR) histogram of photon counts containing depth information
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at a resolution of 64x32x16 (16 being the number of time bins
of each of the 64x32 histograms). When the camera operates
in depth mode, the histogram gathers the photon counts of
4x4 pixels, hence a lower spatial resolution. In the following,
we assume the high resolution intensities are measured at
even frames (denoted by h2k ∈ RM ) and histograms at odd
frames (denoted by h2k+1). For each pixel (i, j), the number
of photons hitting the detector at time bin t follows a Poisson
distribution [8], [9] and is expressed as function of the intensity
ri,j,t,2k+1 and the depth di,j,t,2k+1 as follows

hi,j,t,2k+1 = P [ri,j,t,2k+1 ∗ G (di,j,t,2k+1, σ) + bi,j,2k+1] ,
(1)

with bi,j,2k+1 the background level which is assumed constant
for all time bins of a given pixel, G is the impulse response
of the SPAD camera approximated by a Gaussian function
G (m,σ) with average m and standard deviation σ ≈ 0.5 his-
togram bins [14], [15], P stands for the Poisson distribution.
For each super-pixel (I,J), the LR histogram HI,J,t,2k+1 given
by the camera is the sum of the histogram over four by four
pixels in the spatial dimensions:

HI,J,t,2k+1 =

i=I+2∑
i=I−2

i=J+2∑
j=J−2

hi,j,t,2k+1. (2)

The resulting histograms contain LR depth information which
can be estimated as indicated in the next section.

B. Depth estimation

Assuming known background level and a Gaussian system
impulse response, the maximum likelihood estimator (MLE)
of the depth is obtained as the central mass of the received
signal photon time-of-flights (assuming depths are far from the
observation window edges). This estimator is approximated for
each depth pixel (I, J) as (in the following, we omitted the
frame index k for clarity)

dI,J =

∑t2
t=t1

t ∗max(0, HI,J,t − bI,J)∑t2
t=t1

max(0, HI,J,t − bI,J)
, (3)

with HI,J,t being the photon counts acquired in pixel (I, J)
for time bin t ∈ [1, T ], T =16 is the number of time bins of
the histogram , bI,J is the background level of pixel (I, J) es-
timated as the median of each pixel, t1 = max(1, dmax−2σ),
t2 = min(T, dmax + 2σ) and dmax represents the location of
the signal peak estimated as the location of the maximum of
the histogram of counts. This estimator provides poor perfor-
mance when imaging under extreme conditions due to high-
background level or low illumination imaging (i.e., photon
sparse regime). This highlights the need for an advanced
algorithm to estimate robust and high resolution depth maps.
This paper proposes a tailored deep neural network which
estimate a HR depth map by exploiting the available high
resolution intensity image (to guide spatial upsampling), and
the multi-scale information of the observed histograms of
counts (to improve robustness).

Fig. 1. Representation of the HistNet. Input to the network consists of the
first and the second depth maps. Multi-resolution depths features are integrated
along the contracting path of the U-Net. The intensity image is processed at
multiple resolution and integrated along the expansive part of the U-Net. Skip
connections between the contracting and the expansive paths are displayed as
red arrows.

III. GUIDED SUPER-RESOLUTION FOR SINGLE-PHOTON
LIDAR DATA

A. Network Architecture

This paper proposes a new learning-based algorithm, de-
noted HistNet, for depth denoising and up-sampling. We
consider a U-net architecture [16] and incorporate guidance
information as in [10]. Instead of processing the high di-
mensional observed histograms (which would be time and
memory consuming), our solution is based on the extraction of
informative features from the SPAD array data (LR histogram
data and HR intensity image) and using these to retrieve the
HR depth. Figures 1 and 2 show the considered architecture
and input features. The network considers as input of an
encoder the concatenation of a first depth map (III-A1) and a
second depth map as detailed in following sections (III-A2).
Multi-scale information of the histogram has been exploited
in several state-of-the art 3D LiDAR denoising algorithms
[7]–[12]. This information is incorporated to the encoder
using a guidance branch containing multi-scale depth features
(III-A3). In addition, the high resolution intensity image is
exploited by considering a guidance branch in the decoder.
The processing time to calculate each of these features is
minimal, adding very little computational overhead to our
overall procedure. The network produces a residual map R
[10], [17] that can be added to the first depth map to render the
final high-resolution depth map. These features are described
in more details in the following sections.

1) First Depth Map: The estimated depth map in Section
II-B is 4x up-scaled using a nearest neighbour interpolation.

2) Second Depth Map: When the Quantic 4x4 sensor
operates in the depth mode, each super-pixel in the histogram
gathers the photon counts of 4x4 pixels. Therefore, some his-
tograms might present multiple peaks when observing multiple
surfaces located at different depths. While the first depth map
is calculated by identifying the strongest peak, we compute
a second depth map based on the second strongest peak. We
set the following criterion on the minimum number of photon
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Fig. 2. Details of network architecture and associated parameters. The
"output shapes" of the layers specified in the fourth column correspond to the
case of processing our real data (i.e. histograms of spatial resolution 64x32
and 128x64 intensity images).cv stands for convolutional layer; mp for max-
pooling layer; cat() for concatenation with the layers specified in the brackets
and dcv for deconvolutional layer.

counts a relevant peak should contain. For each pixel (I, J),
we consider a peak at bin t to be relevant if

HI,J,t > bI,J + α
√
bI,J (4)

with HI,J,t being the number photon counts of pixel (I, J)
at time bin t; bI,J being the background level at pixel (I, J);√
bI,J represents the standard-deviation of the Poisson dis-

tributed background counts; and α is a user adjusted parameter
to ensure the second depth does not come from the noise but
mostly represent real signal. We set α = 12 in what follows,
and the second depth is set to zero if this criterion is not met.

3) Multi-scale depth features: Multiple resolution scales
have been shown to help depth estimation, in particular in high
noise scenarios [8], [10], [15]. This information is included to
the network by using four depth features D1, D2, D3 and
D4 of different resolution scales. D1 is obtained by down-
sampling the previously obtained 256 × 128 first depth map
by two in both spatial dimensions using nearest neighbour
interpolation. D2 is obtained by computing center of mass
on the 64 × 32 × 16 LR histogram. D3 and D4 are obtained
by down-sampling this histogram by a factor of two and four
by summing the neighbouring pixels in the spatial dimensions,
hence obtaining histograms of size 32×16×16 and 16×8×16
respectively. Thanks to this process of down-sampling at the
level of histogram, the resultant D3 and D4 have higher signal-
to-noise than the first depth map, albeit with a lower resolution.

4) High resolution intensity: Akin to [10]–[12], this paper
uses a HR intensity map to guide the reconstruction of the
depth. The intensity image is directly obtained from the
SPAD detector Quantic 4x4. This intensity image has a spatial
resolution of 256 × 128, which is four times larger than the
64× 32 histogram spatial resolution.

B. Implementation details
The considered loss function is based on the `1-norm

that is known to promote sparsity [18], [19] allowing the
reconstruction of separate depth surfaces

L (θ) =
1

MN

M∑
m=1

N∑
n=1

∣∣Rm,n(θ) + dm,n − drefm,n

∣∣ , (5)

with M the number of images within one batch, N the number
of pixels of each image, θ the trainable parameters of the
network, the R the residual map predicted by HistNet, d the
first depth map, and dref the ground truth depth. During the
training, a batch-mode learning method with a batch size of M
= 64 was used. We implemented HistNet within the Tensorflow
framework and use the ProximalAdagradOptimizer optimizer
[20], as this enables the minimization of the `1-loss function.
The learning rate was set to 1e-1. The training was performed
on a NVIDIA RTX 6000 GPU for 2000 epochs.

C. Datasets
Using the observation model described in Section II-A, we

simulate realistic SPAD array measurements (LR histogram
and HR intensity) from 23 scenes of the MPI Sintel Depth
Dataset [21], [22] for the training and validation dataset, and
from scenes of the Middlebury dataset [23], [24] for the
test dataset. We increase the number of training images by
a factor of eight by using all possible combinations of 90°
image rotations and flips. Furthermore, the images are split
into overlapping patches of size 96x96 with a stride of 48.

IV. RESULTS ON SYNTHETIC DATA

A. Quantitative criteria
We consider two metrics to assess the level of noise affect-

ing the data, the average number of signal photon counts per
pixel (ppp), given by

ppp =
1

N

∑
i,j

t2∑
t=t1

(hi,j,t − bi,j), (6)

and the signal to background ratio (SBR) defined as

SBR =
1

N

∑
i,j

∑t2
t=t1

(hi,j,t − bi,j)
bi,j (t2 − t1)

. (7)

The quality of the reconstruction is measured using the root
mean squared error (RMSE) =

√
1
N ‖R + d− dref‖2 and the

absolute depth error (ADE) =
∣∣R + d− dref

∣∣, R being the
residual map predicted by HistNet after the training, d the up-
scaled version of the low resolution depth map, i.e the first
depth map, and dref the ground truth.

B. Comparison algorithms
We compare the results of HistNet with the following

methods:
• Nearest-neighbour interpolation this is the first depth map

(the input of the network)
• Guided Image Filtering (GIF) of He et al. 2013 [25] the

GIF is applied to the first depth map with the HR intensity
image as a guide.

• DepthSR-Net of Guo et al. 2019 [10] We retrained this
network using the same training datasets as our network.
It performs 4x upscaling guided by the HR intensity map

• Algorithm of Gyongy et al. 2020 [15] designed to process
the Quantic 4 x4 SPAD array and consists of various steps
of guided filtering and up-sampling with low computa-
tional cost.
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Fig. 3. Comparison of reconstruction techniques for measurements simulated for the "medium signal-to-noise scenario" (a-g) and for the "low
signal-to-noise scenario" (h-n). ADE is the absolute depth error calculated with normalized data between 0 and 1. (a/h) displays the ground truth depth
image; (b/i) displays the ground truth of the intensity. From left to right, the reconstructed depths using (c/j) the nearest neighbours interpolation; (d/k) the
GIF [25]; (e/l) the DepthSR-Net algorithm [10]; (f/m) Gyongy’s algorithm [15]; and (g/n) the proposed HistNet algorithm.

TABLE I
QUANTITATIVE COMPARISON OF THE DIFFERENT RECONSTRUCTION METHODS FOR 4X UP-SAMPLING ON SIMULATED MEASUREMENTS WITH A

HIGH, MEDIUM AND LOW SIGNAL-TO-NOISE. RMSE IS THE ROOT-MEAN-SQUARE ERROR; ADE IS THE ABSOLUTE DEPTH ERROR.

NNI GIF Guo et al. [10] Gyongy et al. [15] Proposed HistNet
Rec time per
scene 1ms 0.4s 7s (on GPU) 4s 7s (on GPU)

Training on high signal-to-noise data with second depth; ppp=1200 counts and SBR=2
Scene RMSE ADE RMSE ADE RMSE ADE RMSE ADE RMSE ADE

Art 0.053 0.038 0.046 0.039 0.026 0.0080 0.043 0.0076 0.023 0.0027
Reindeer 0.040 0.035 0.037 0.035 0.015 0.0051 0.023 0.0040 0.012 0.0018

Training on medium signal-to-noise data without second depth; ppp=4 counts and SBR=0.02
Art 0.32 0.22 0.22 0.17 0.054 0.023 0.11 0.050 0.053 0.019

Reindeer 0.31 0.21 0.21 0.16 0.047 0.024 0.12 0.060 0.040 0.019
Training on low signal-to-noise data without second depth; ppp=4 counts and SBR=0.006

Art 0.363 0.276 0.27 0.22 0.102 0.064 0.248 0.187 0.082 0.055
Reindeer 0.357 0.272 0.259 0.206 0.083 0.053 0.234 0.168 0.075 0.050

C. Results

We simulate realistic SPAD measurements from 1104x1376
HR scenes of the Middlebury dataset [23], [24]. Three different
noise scenarios were considered: a scenario mimicking the
lighting conditions of [15] with ppp = 1200 counts and
SBR = 2 denoted "high signal-to-noise scenario", a scenario
corresponding to a lower photon count and lower signal to
noise with ppp = 4 counts and SBR = 0.02 denoted "medium
signal-to-noise scenario", and a scenario corresponding to a
lower photon count and much lower signal to noise with ppp
= 4 counts and SBR = 0.006 denoted "low signal-to-noise
scenario" . We trained a separate network for the three different
noise scenarios. Quantitative comparison in Table I for two
scenes show HistNet performs better in terms of the RMSE
and ADE for all noise scenarios. Figure 3 shows that the
proposed method provides best results for low and medium
signal-to-noise. The processing time of the different methods
is reported in Table I. The reconstructions of HistNet and
DepthSR-Net were performed on a NVIDIA RTX 6000 GPU.
Results on more validation data, a study on the robustness to
different SBR and ppp levels, and results for 8x upsampling
can be found in [26].

V. RESULTS ON MEASURED REAL DATA

We test the performance of HistNet on measurements cap-
tured by the Quantic 4x4 camera [15]. The spatial resolution
of the histogram data is of 32x64 and the number of time bins
is of 16. The resolution of the intensity image is of 128x256.
This data shows ppp=1200 and SBR>2, and we used HistNet
trained on the corresponding scenario. Figure 4 shows the
reconstruction of Quantic 4x4 data via HistNet together with
a comparison with different reconstruction algorithms. We see
that HistNet leads to more accurate image with sharper edges.

VI. CONCLUSION

This paper presented a deep network for up-scaling and
denoising of depth images obtained using a single-photon
SPAD array detector. The network operates on informative
multi-scale depth features to improve robustness and use
the HR intensity image as a guide. The network showed
best performance when compared to other algorithms using
simulated and real data, under different noise scenarios. Future
work will focus on the high frame rate of the SPAD array
sensor and use information in the temporal domain to achieve
better spatial resolutions for depth images. We also propose
to tackle the misalignment between the histogram and the
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Fig. 4. Reconstruction of Quantic 4x4 data. (a-f) correspond to the indoors juggling scene. (g-l) correspond to the outdoors juggling scene. (g*-l*) correspond
to closeup views of (g-l). (a/g) displays the reflectivity image from the SPAD [15]; From left to right, reconstructed depths using (b/h) NNI; (c/i) the GIF
algorithm [25]; (d/j) the DepthSR-Net algorithm [10]; (e/k) Gyongy’s algorithm in [15] ; and (f/l) the proposed HistNet algorithm.

intensity image, which is inherent to the operating mode of
our SPAD detector that acquires them alternately.
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