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Abstract—In this paper, we use the advances brought by neural
networks for the implementation of a vision based localization
framework for autonomous vehicles namely UAVs. We base our
work on monocular visual odometry. It is used for incremental
localization of autonomous vehicles. This method suffers from
drift. Loop closure detection is a way to improve its accuracy.
Thus, we introduce a Siamese network able to perform binary
classification in order to detect the visited places and the loop
closures. This gives us an accurate, light and fast vision based
localization framework.
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I. INTRODUCTION

The development and implementation of autonomous vehi-
cles are interesting for a large community of researches as well
as industrials. They require a multidisciplinary knowledge and
competences to ensure the planning, navigation, communica-
tion and sensing tasks. The navigation task could be ensured
through a precise knowledge of the state of the robot as well
as its environment. The state of the robot is given by its
orientation, position, speeds (linear and angular) and accelera-
tions. The environment of the Unmanned Autonomous Vehicle
(UAV) is explored using the different sensors embedded within
the engine. These could be very different from a robot to
another. Namely, the UAV could be equipped with camera,
GPS sensor, LiDAR, altimeter, accelerometer, gyrometer or
Inertial Measurement Unit (IMU). It seems obvious that the
price of the UAV is highly correlated to the embedded sensors.
The autonomous vehicles on the market are mainly located
using GPS, coupled with other sensors to improve the position
estimation accuracy. Although GPS-based position estimation
techniques have gained in accuracy this decade, their perfor-
mance is still linked to the price of sensors and to environment
conditions. Thus, accuracy decreases in urban canyons for
example, and satellite location data is unavailable in closed
/ indoor environments. In addition, GPS jammers are used,
nowadays, to block GPS signals which could be fatal for the
UAV. Besides, global positioning systems and satellites are
governments and states property which is a strategic matter.
To cop with these limitations, we adopt GPS-independent
methods and we use visual information for position estimation.

Cameras could be either monocular, stereoscopic or omni-
directional. They could also be equipped with depth sensors
(RGB-D). On the other hand, in the computer vision com-
munity, there are several vision-based localization strategies.
These are Map-building systems, Map-based systems and
Mapless systems [1]. Map-building systems, like Simultaneous
Localization and Mapping (SLAM) [2], aim to build robot
surroundings model and localize the UAV locally, relative to
the built map. Map-based approaches need a model of the
environment such as point cloud or a computer aided design
(CAD). The model has to give absolute position. Finally,
Mapless systems ensure the localization of the robot without
any reference or model of the environment, like the Visual
Odometry [3]. The previously mentioned approaches can suf-
fer from drift. In order to overcome this, some works are based
on fusion with other sensors such as Inertial Measurement
Unit (IMU). Other methods are based on the loop closure
detection which allows to estimate the error and to reduce it.
Loop closure detection could be performed using place recog-
nition algorithms. But, luminosity, viewpoint and/or noise
are environmental parameters that influence the performance
of the visual place recognition procedure. Thus, an efficient
solution must be robust to these parameter variations. In order
to solve this problem, researchers looked for the appropriate
representation of a place. Many state-of-the-art methods use
the Bag-of-Words (BoW) [4] paradigm. More recent ones
exploit the advances brought by neural networks [5], [6].
In this article, we, first, propose an original localization
approach based exclusively on visual information and imple-
mented through a deep learning architecture. Then, we update
our existing Vision Based Localization Framework with the
new proposed architecture. Thus, in section II we draw up
the state of the art. Then, in section III we propose a neural
network to detect loop closure. Finally, in section IV we update
our whole framework to accurately locate the UAV and we
present the performances of our proposed system.

II. RELATED WORKS

Visual Odometry is a method that estimates the vehicle
pose using video stream input. It measures image features
transformation between successive frames. Such technique is
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cost-efficient and versatile. It suffers from incremental error
due to imaging conditions such as light, blur, textures, etc.,
then it could mislead the position estimation. Furthermore,
camera calibration errors are accumulated at each iteration and
the scale could not be estimated, particularly for monocular
sensor [7]. All these drawbacks and limitations motivated the
research community to design innovative solutions in order to
reduce drift and errors. Authors in [8] explain drift propagation
and propose some ways to reduce the errors. One way is to use
the pose optimization. It consists in using known successive
transformations as constraints. Loop closure is a constraint that
makes it possible to estimate the drift when a place is revisited.
Papers, like [9], introduce different approaches to detect loop
closure, and different ways to estimate and to correct the drift.
Other approaches use Kalman Filters in order to merge data
provided by different sensors like IMU , compass and visual
odometry. This refines visual odometry pose estimations and
bounds the drift, like in [10] and [11].
State-of-the art loop closure detection methods are based on
two main approaches. Appearance-based approaches, based on
building visual dictionaries and Bag-of-Words (BoW), like in
[4], [12], [13] and [14]. The second family, which is more
recent, is based on Convolution Neural Networks (CNN),
like in [5], [2], [6] and [15]. In [5], a deep CNN is used
(MobileNetV2) to extract incoming frames features. These
features are used to build Hierarchical Navigable Small World
(HNSW) graphs. HNSW is a proximity graph. Besides, SURF
[16] features are extracted for each frame. SURF features are
used to gain invariance. A distance between CNN features is
then calculated to select Loop Closure Detection candidates.
This selection is oriented using HNSW. Then, using SURF
features and hash function, these candidates are filtered to
generate final loop closure detection. In a previous work [15],
we compared different architectures, namely ResNet [17],
AlexNet [18] and GoogLeNet [19] and deployed them in two
versions each. A first architecture called Siamese [20] and the
second one called 6-channel [21] were implemented, compared
and tested while performing the loop-closure detection task.
Our final results showed that Siamese ResNet has a good
accuracy, up to 94%.
In this novel research work, we use a very recent architecture
called YOLO (You Only Look Once) in its 5th version. The
YOLO [22] framework is a single stage detection approach
where a CNN is applied to the whole image. This makes it
faster than other approaches. Besides, YOLO is accurate and
able to detect many classes (Coco dataset [23]). The YOLO
architecture divides the image into a grid. Then, each grid cell
predicts bounding boxes and class probabilities. The bounding
boxes are defined with their center coordinates, height, width
and confidence. The YOLO framework was released in five
versions. Original YOLO CNN is made of 24 convolutional
layers followed by 2 fully connected layers. Then, YOLOv2
[24] adopted Darknet-19 [25], which is made of 19 convo-
lutional layers and 5 maxpooling layers. YOLOv3 [26] used
Darknet-53 as a backbone. Its novelty lies in the use of residual
blocks. A residual block contains at least a connection that

bypasses two or three layers of a network. It is recognized
by the direct connection between the output of a layer and a
deeper layer. This leads to a fully convolutional network made
of 106 convolutional layers. YOLOv5 [27] is the ultimate
model of YOLO architecture. It shares the same architecture
as YOLOv4 [28]. Major improvements of YOLOv5 affect
data augmentation. In fact, mosaic data augmentation and auto
learning bounding boxes were used.
Through this research work, we introduce a framework imple-
menting monocular feature-based visual odometry, combined
with YOLOv5 to achieve loop-closure detection.

III. PROPOSED APPROACH

A. YOLOV5 architecture

In this work, we use the YOLOv5 architecture, which was
designed for real time applications, to recognize already visited
places. First, we undertake modifications on YOLOv5 archi-
tecture, then, the modified network goes through a training
then a validation step. YOLOv5 implementation covers the
following parts:
1- YOLOv5 Model Architecture which has three important
parts : (i) Model Backbone, (ii) Model Neck and (iii) Model
Head. (i) The Model Backbone aims to extract rich features
from the input image. A Cross Stage Partial Network (CSPNet)
[29] is used as model backbone. In fact, CSPNets are faster
than deeper networks. (ii) Model Neck constructs feature
pyramids. This component helps the model to detect and
identify same objects at different sizes and scales. This leads
to better performance with unlearned data. Different types of
feature pyramids are used by many models, like FPN [30],
BiFPN [31], PANet [32] which is used in YOLOv5. (iii) Model
Head performs the final detection. It applies anchor boxes on
generated features and outputs final vectors containing class
probabilities, objectness scores, and bounding boxes. YOLOv5
has the same model head as YOLOv3 and YOLOv4.
2- Activation Function Activation function is an important
component as it determines whether the neuron should be
activated or not. In YOLOv5 Leaky ReLU [33] and Sigmoid
[34] activation functions are used, which ensures a good
compromise between precision and saturation. In fact, the
Leaky ReLU activation function is used in middle/hidden
layers and the Sigmoid activation function is used in the final
detection layer.
3- Cost Function or Loss Function The loss generated by the
network after each layer is a combination of objectness score,
class probability score and bounding box regression. YOLOv5
uses Binary Cross-Entropy.
4- Optimization Function YOLOv5 implementation can use
either Stochastic Gradient Descent (SGD) [35] or Adam [36]
optimizers. However, the default optimization function is SGD.

B. Proposed modifications on YOLOv5

Our goal is to use a Siamese model like we did with
ResNet [17], AlexNet [18] and GoogleNet [19] in [6]. The
original network head is designed to apply anchor boxes
and predict class probabilities, bounding boxes and scores.
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Whereas, we aim to recognize a place and achieve a binary
classification. Thus, we replace the network head by a 3-layers
block whereas we preserve the model backbone which output
is of shape [512x7x7]. Layers added are: first, an adaptive
average pool layer in order to down sample the feature map
from [512x7x7] to [512x1x1]; second, a flattening layer to get
a 1-d feature map which undergoes a linear transformation;
finally a sigmoid activation function to bound the output. We
limited the length of the final feature vector to [1000x1] in
order to be coherent with the methods we will compare our
performance with (ResNet, AlexNet, GoogleNet).
In summary, we propose to evaluate the performances of
a Siamese network. This one is made of two branches of
modified YOLOv5 backbones, namely two CSPDarknet53 to
which we append customized top layers. The two branches
output two [1000x1] vectors. An Euclidean distance between
these vectors is computed. We train the Siamese network so
that it delivers a distance close to zero if the two input images
are representing the same place. During training, we use a
custom dataset based on Visual Place Recognition Dataset
from Bonn University (Bonn subset) [37] augmented by a
database of simulated images that we produced. This dataset
contains images acquired in changing light conditions which
is a great advantage for us to make our overall architecture
robust towards such variations1. We generated 9000 positive
and negative pairs from these images. Besides, each image
undergoes a random cropping and Gaussian blur. This helps to
enlarge the range of spatial activation statistics. Furthermore,
the Gaussian blur is applied in order to simulate motion blur.

IV. EXPERIMENTS

In this section we highlight the set up of our customized
Siamese YOLOv5 network, namely training and validation.
The goal is to compare the performance of the two networks in
terms of accuracy, speed, size, and the impact on the localiza-
tion framework. Since the available YOLOv5 implementation
is written using Pytorch, a Python package, we used the same
framework in this research. We performed our experiments
on Google Collaboratory platform, using Intel Xeon 2.20GHz
processor, 12 GB RAM and NVidia Tesla K80 GPU.
Training: The model used is not pre-trained, thus training
process takes around 95 epochs. The training is made using
80% of our dataset described previously, which means 7200
pairs. We use the same hyper parameters like in [15]. Our
batch size is 11 image pairs. The loss function is Contrastive
Loss and the optimizer is Stochastic Gradient Descent in order
to maintain the same configuration as in [15]. However, the
learning rate is 10−1, unlike Siamese ResNet, GoogLeNet and
Alexnet. This could be explained by a faster convergence of
YOLO.
Validation: For the validation we use 1800 pairs which is
20% of the dataset. These pairs weren’t used for the training
step. After 95 epochs, the customized YOLOv5 reached 93%
accuracy. Fig.2 shows the improvement of accuracy after each

1https://www.kaggle.com/mohamedalisedrine/loop-closure-training-dataset

epoch. Besides, the following confusion matrix (Fig.1) shows
that the network accuracy is around 0.93, its recall is 0.9488
and its specificity is 0.9053.

Fig. 1. Trained Siamese YOLOv5 Confusion Matrix

Fig. 2. Network Accuracy Improvement per epoch

In our previous work, we showed that Siamese ResNet
outperforms Siamese Alexnet and GoogleNet while recogniz-
ing places. Besides, regarding accuracy, Siamese YOLO is
the second best network behind Siamese ResNet, using the
same dataset: table I. The next subsection will introduce a
comparative analysis between these two networks.

TABLE I
SIAMESE ARCHITECTURES ACCURACY

Network Accuracy Recall Specificity

Siamese Alexnet 93% 91.49% 94.53%
Siamese GoogLeNet 83.61% 88.83% 78.67%

Siamese ResNet 94.83% 96.42% 92.27%
Siamese YOLOv5 93% 94.88% 90.53%

Siamese ResNet against Siamese YOLO: The comparison
is based on two main criteria: accuracy (detection perfor-
mance) and detection rate. Concerning the accuracy, figure
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3 shows that the Siamese versions of both ResNet and
YOLOv5 have similar performances at distinguishing between
places, despite a slightly better precision for Siamese Resnet.
In fact, Siamese ResNet’s area under curve (auc) is about
0.9859 which is very close to 0.9812, Siamese YOLOv5
auc. Concerning the detection rate, experiments show that

Fig. 3. Siamese ResNet and Siamese YOLOv5 zoomed ROC curves

Siamese YOLO is faster than Siamese ResNet in detecting
loop closure when they are executed on CPU or GPU. Figures
4 and 5 prove that the gap between the two networks is more
important when using CPU. In fact, Siamese YOLO is 5 times
faster than Siamese ResNet on CPU (Intel Xeon 2.20GHz
processor), while it is 1.5 times faster on GPU (NVidia
Tesla K80). Therefore, Siamese YOLO is more suitable for
real time applications, which is our case. Moreover, Siamese
YOLO is lighter than Siamese ResNet. Its size is 18MB while
Siamese ResNet is 98MB, which makes Siamese YOLOv5
more suitable for embedded applications.

Fig. 4. Siamese ResNet vs Siames YOLOv5 execution time using CPU

As Siamese YOLOv5 performed accurately and quickly in
loop closure detection, we decide to replace Siamese ReseNet
with Siamese YOLOv5 in our overall vision based localization
framework introduced in [6].
Overall Vision Based Localization Framework: We showed
above that detection with Siamese YOLOv5 is faster than with

Fig. 5. Siamese ResNet vs Siames YOLOv5 execution time using GPU

Siamese ResNet, thus, we increase the correction rate for loop
closure detection. This is to observe the impact of such a
modification on the accuracy of the overall system and the
ability of Siamese YOLOv5 to be called more frequently. We
evaluate the performance of our framework through changing
the Correction Spatial Resolution (CSR): the distance travelled
by the autonomous vehicle between two consecutive calls
of the neural network. Reducing this distance leads to more
frequent neural network calls. We also change the Learning
Spatial Resolution (LSR): the distance between two stored
images during the learning step. Thus, we increase the de-
tection rate four times, i.e we reduce the CSR. Then, we use
the framework in three different scenes described in table II.
Table III below shows the framework performance based on
Siamese ResNet and Siamese YOLOv5. We notice that using
YOLOv5 at a higher correction rate leads to better results than
using ResNet. Performance increase goes up to 39 centimeters
for Scenario 1. This is due to Siamese YOLOv5’s ability to
quickly classify image pairs.

TABLE II
SCENARIOS SPECIFICATIONS

Scenario 1 2 3

Path shape Loop 8-like S-like
Closed Loop Yes Yes No
Length (m) 24 42.5 22

Indoor/Outdoor Indoor Indoor Indoor
UAV speed (m/s) .5 .5 .5

1
LSR

= a(m) .125 .125 .125
1

CSR
= b(m) .5 .5 .5

TABLE III
VISION BASED LOCALIZATION FRAMEWORK PERFORMANCE

Scenario 1 2 3

Siamese ResNet Average Drift (cm) 73.22 27.93 41.98
Siamese YOLOv5 Average (cm) 34.02 22.16 27.71
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V. CONCLUSION

In this research work we develop a stand alone framework
for vision based localization of UAVs. We use the very last
version of the YOLO network where we modify the head
model and we adapt the model neck. We introduce a Siamese
network able to perform binary classification in order to detect
the visited places and the loop closures for our UAV. The great
advantages of our proposed method are, respectively, its high
speed compared to state of the art methods as well as its light-
ness which could encourage an embedded implementation. In a
future work, we propose to study trajectory and path planning
protocols in order to ensure real time video-surveillance by
UAV.
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