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Abstract—This article introduces the UJI aerial library robot.
It uses visual techniques to self-locate and navigate autonomously
to find books and make automated inventories. A control strategy
for navigating along library shelves is presented, using visual
markers for self-positioning. An image-based book recognition
technique is described, which combines computer vision tech-
niques to detect the labels on the spines of the books, and then
optical character recognition (OCR) to decode the book code into
text. These data can be used to make an inventory of the library.
Lost books can be detected automatically and a particular book
can be located in the library. Our quadrotor robot was tested in
a real library with promising results.

Index Terms—drone, image analysis, localization, indoors,
navigation, UAS, automated inventory, indoors, book recognition

I. INTRODUCTION

A library is a suitable environment for robotics application
since most of the librarian tasks are repetitive and time-
consuming and they could be automated, such as inventory or
relocation of misplaced books [1]. A considerable research
has resulted in several technologies that try to automate these
tasks, including librarian robots for inventory tasks [2], [3],
[4]; computer-vision-based book recognition [5], [6], [7], [8];
and book detection based on deep learning [9], [10], [11].

With respect to book delivery, a pioneering system was the
UJI librarian robot [12], an autonomous mobile manipulator
for localising and extracting books from the bookshelves in a
library desk. Also, RFID tags have been used [13].

On the other hand, aerial robotics has grown to be a
popular field in the last decade to the extent that Unmanned
Aerial Vehicles (UAVs) -or drones- have become a standard
platform in the robotics research community [14] thanks to
their versatility, high mobility and ability to cover areas at
different altitudes and locations. Indeed, this kind of robots
have enabled a large variety of applications, such as traf-
fic monitoring, homeland security, farming, surveillance, etc.
[15].

Compared with traditional wheeled robots, the main ad-
vantage of aerial robots is their ability to move in three-
dimensional space with little effort, flying at different altitudes
and hovering in the target area to collect precise information.
This ability to move in 3D space, however, brings with it great
scientific and technical challenges, specially in the case of

autonomous flight in indoor spaces [15] for which perceptual
intelligence based on aerial vision is called for to self-localise,
navigate and perform the desired tasks in human environments.
Few such indoor systems exist; for instance, Harik et al. [16]
describe an approach combining an Unmanned Ground Ve-
hicle (UGV) and an UAV for the automation of warehouse
inventory.

An additional problem is that Global Navigation Satellite
System (GNSS) cannot work properly indoors; as an al-
ternative, computer vision technologies have been used for
navigation of UAVs [17]. The use of maps is a state-of-
the-art approach [18], [19]. Another common solution for
UAV navigation is the use of landmarks [20]. Hummel et
al. [21] present bookshelf scanning with a drone, based on
rectangle detection validated with book mock-ups on a poster.
In summary, although a wide research in navigation has taken
place [22], [23] autonomous indoors UAV navigation is still
a challenge.

Recapitulating, ground based robots have been and already
are being used in libraries, but automation based on aerial
robots has been not so far due to the above-mentioned tech-
nological challenges. Our proposal is that an UAV can be
used for library inspection leading to several advantages over
human manual inspection such as saving time and cost, easy
access to all bookshelves, reading several books per image,
and alerting to book misplacements in real-time. To the best
of our knowledge the use of drones has not been reported
as an automated inventory device within libraries. In this
paper, we present the UJI aerial librarian robot, an unmanned
quadrotor drone -or quadcopter- that leverages computer vision
techniques to autonomously self-localise and navigate within
a library for automated inventory and book localisation, iden-
tifying misplaced books. Our quadcopter robot has been tested
in a real library with promising results.

II. LOCALISATION

We used the Parrot Bebop 2 quadcopter [24] (see Figure 1)
and a self-tracking approach based on visual markers in order
to compute the quadcopter position in the library. To this end,
several ArUco markers [25] were placed on the bookshelves
in specific poses (see Figure 2) so that the quadcopter pose is
estimated according to the number and type of visible markers.
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Fig. 1. Parrot Bebop 2 quadcopter

Fig. 2. A bookcase sample equipped with ArUco markers

Note that the precision of the quadcopter pose estimation
directly depends on the knowledge about the markers pose,
since the camera is rigidly mounted on the drone. It is
necessary to introduce a calibration process. With that aim,
visual information from the camera is used to calculate mutual
poses of the markers as follows:

1) The three markers closest to the origin of the global
coordinate system (let call them initial markers) are
chosen, manually measured and preset their poses in
global coordinates in a Cartesian coordinate system that
we arbitrarily set up (see Figure 3)

2) Mutual poses of the initial markers are searched and,
from that information, their preset global poses are cor-
rected not to contradict camera-measured mutual poses

3) On the basis of corrected poses of the three initial mark-
ers, positions of all other present markers are obtained

Mutual marker poses can be obtained because the marker-
tracking library (OpenCV [26] in our case) provides the pose
in the camera coordinate system for each marker in every
frame. So, if two markers, with index numbers A and B, are
present in a frame, two three-component position vectors PMA

C

and PMB

C , and two orientation quaternions QMA

C and QMB

C

(in camera coordinates) are obtained. From these four vectors,
transformation matrices TMA

C and TMB

C are derived according
to Equation 1.

TMC =

[
RMC PMC
0 1

]
(1)

where RMC is the rotation matrix obtained from the orienta-
tion quaternion QMC following Equation 2 as defined in [27].

The next step is to find the camera pose in the marker
coordinate system through the inverse matrix:

TM
−1

C =

[
RM

T

C −RMT

C · PMC
0 1

]
(3)

Thus, the transformation matrix for conversion from the
reference of one marker into the reference frame of the other
marker is obtained as follows:

TMB

MA
= TCMA

· TMB

C (4)

Then, TMB

MA
is divided into PMB

MA
and QMB

MA
. With the pur-

pose of getting a higher precision in mutual pose estimation,
several images of the same pair of markers are taken from
different points of view and the average is considered for the
quadcopter localisation.

This process is performed for each appropriate pair of
markers when more than two markers are present in the frame.
The markers are sorted in ascending order according to their
index numbers, that are all different. So, as illustrated in
Figure 3, the index number of markers increases as markers get
placed further from the origin of the global coordinate system.
Bundle adjustment is used for the three initial markers; poses
for every of the ”further” markers are calculated as an average
based on the positions obtained from several ”nearer” markers.
A weighted average of the pose considering several markers
falling into the field of view was used to increase the stability
of localisation with respect to the robot map.

III. NAVIGATION

The possibility to control the velocity of the quadcopter
(i.e. linear X speed, linear Y speed, linear Z speed, angular
yaw speed) is implicitly presented by software-hardware im-
plementation of Parrot Bebop 2. In addition, the quadcopter
has difficulties indoors to keep the same position for a long
time when no movement commands are given.

Consequently, it is required to continuously adjust the
movement commands based on the position feedback. First,
a position control module is in charge of ensuring that the
quadcopter is moving towards the goal point adequately, or
that it does not drift away from the goal point when it is
already there. For that, it estimates and sends the Y linear
translation (vy,d), roll rotation (γd), pitch (θd) and yaw (ωψ,d)
angles to the quadcopter (see Figure 4). So, proportional
control can be applied to control Y coordinate and yaw angle
of the quadcopter in accordance with Equation 5.

vy,d(t) = KP,y · ey(t)
ωψ,d = KP,ψ · eψ(t)

(5)

where KP,y and KP,ψ are predefined proportional coeffi-
cients, while ey(t) and eψ(t) represent the errors between the
actual and desired pose of the quadcopter in terms of the corre-
sponding coordinate. When a similar principle was considered
with roll and pitch angles to control X and Z coordinates,
unsatisfactory results were obtained. The main reason is that X
and Z quadcopter speeds are not proportional to roll and pitch
angles, as it can be derived from a simple dynamical model
of the quadcopter. Instead, there is a dynamical connection
between the values and it is possible to take this into account
by adding a differential component to the controller. Hence,
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Fig. 3. Pattern for placing the markers on the bookcase based on their index
numbers. Note also the orientation of the two coordinate systems

Fig. 4. Flowchart of our implemented position control system where x, y,
z, and ψ represent the actual pose of the quadcopter; xd, yd, zd, and ψd
represent its current desired pose; ex, ey , ez , and eψ represent the error
between the actual and the desired pose of the quadcopter; vy,d, γd, θd and
ωψ,d represent the commands sent from the controller to the quadcopter

the desired values for pitch and roll angles can be calculated
according to Equation 6, obtaining more accurate results as
shown in Figure 5.

γd(t) = KP,x · ex(t) +KD ·
dex(t)

dt

θd(t) = KP,z · ez(t) +KD ·
dez(t)

dt

(6)

Once the quadcopter is able to reach the desired points
in 3D space, the next step is path planning. In this case,
the quadcopter should fly along each shelf following a linear
path. As illustrated in Figure 6, the followed trajectory departs
from the straight line, although all the waypoints are reached
successfully. Thus, several experiments were carried out to
determine the appropriate number of waypoints so that the

Fig. 5. Transition processed for controlled change of quadcopter position
during flight. Graphs for the three axes are independent and represent different
moments in flight. For each graph, when transition processing is taking place,
reference values for the other axes remain constant.

bookshelves are completely covered. In our case, 8 waypoints
for each shelf are required.

Fig. 6. Experimental trajectory of the Parrot Bebop 2 with 12 waypoints
located along the bookcase in the global coordinate system.

IV. BOOK RECOGNITION

With the aim to perform librarian tasks, the quadcopter must
be able to recognise each book within its field of view. For that
reason, an analysis of the visual features to properly identify
each book is required. However, there are a wide range of
visual features that vary from one book to another such as
size, thickness, colour and title style. This makes the book
recognition a difficult task to achieve.

Deep Learning (DL) techniques could be considered but
they need a large set of labeled data. Due to the great amount
of books in a library, this process and its corresponding
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training stage would be highly time-consuming and unfeasible.
Also, RFID systems will not provide information about the
exact location of each book.

Instead, our approach takes advantage of the ordinary tags
for book cataloguing that are used in most of the libraries
worldwide. Basically, a tag is a homogeneously coloured label
where an alphanumeric code according to the library catalogue
is written in black. These tags are usually placed at the bottom
of the book spines, as shown in Figure 8. On this basis,
we have designed a novel aerial vision approach for book
recognition that is composed of the detection of the book tags,
followed by the book code on each tag by means of Optical
Character Recognition (OCR).

A. Book tag detection

The first step is to automatically define a region of interest,
that is, focus the search in the area where the books are instead
of the whole image. For that, the ArUco markers are used. So,
all the ArUco markers included in the considered dictionary
are searched in each frame so that we obtain a list of all the
2D corner positions corresponding to each detected marker
together with its identifier. From these data, a horizontal line
joining the top marker corners is defined. This line represents
the base of the considered region of interest, which is 200
pixels high, as illustrated in Figure 7. The resulting image is
converted to grayscale as follows:

gray = 0.299 ∗R+ 0.58 ∗G+ 0.114 ∗B (7)

Next, the image is filtered in order to remove noise. In
particular, a 9x9 Gaussian kernel is used. The subsequent stage
corresponds to edge detection; for that, a threshold for each
region of the image is estimated by means of a combination
of binary thresholding with the Otsu thresholding. The use
of local thresholds instead of a global one for the whole
image provides better segmentation results for images with
varying illumination -a common situation in a library. Then,
an erosion operation allows the system to extract the vertical
lines identifying the book borders. Similarly, an adaptive
thresholding followed by a pair of morphological operations
allows to identify the horizontal edges of the book tags.

Once all the edges have been properly distinguished, the
intersection points are searched. Finally, the book tags are
obtained from those intersection points. Indeed, superimposing
the lines on the original image confirmed the detection of book
tag boundaries.

Fig. 7. Flowchart of our vision approach for book tag detection

Some of the obtained experimental results are shown in
Figure 8. As illustrated, the designed approach properly detects

the book tags in most of the cases, even when they are partially
broken or the book is inclined. However, the approach fails
when the book tag is not placed at the bottom of the book
spine, as in the case of Figure 8c. Another error takes place
when two consecutive books are too similar and there is
no clear vertical space between them (see Figure 8d). As
an overall result of several runs, since often a tag that is
incorrectly identified in one frame is successfully detected in
the next, overlapping frame, the actual success rate is that 85
% of the book tags in the bookshelves are correctly detected.

Fig. 8. Some results of the book tag detection illustrating successful results
for partially broken (a) and slanted tags (b), and problematic cases such as
too high tags (c) and unclear vertical separation (d)

B. Optical Character Recognition (OCR)

In this work, Pytesseract, a wrapper for Tesseract-OCR En-
gine, was used. So, each tag detected by the book tag detection
module is fed into Pytesseract for its processing. Then, the
generated output is checked in terms of its consistency, since
only partial text could have been provided due to broken book
tags or the book thinness. In addition, skewed or rotated text
may also make the OCR fail. With all this, 75 % of the books
in the bookshelves were detected correctly.

V. EXPERIMENTAL RESULTS

The UJI aerial librarian robot was tested in the library
of the high school I.E.S. Els ports. In the experiments, the
robot navigated around wooden bookcases with a height
of 2.4 metres, a width of 1.7 metres and a depth of 40
centimetres (see Figure 2). Each bookcase is composed of 6
bookshelves. Each bookshelf was equipped with several visual
7x7 ArUco markers necessary for localisation and navigation.
In particular, they were attached to the front side of each shelf,
with a horizontal distance between the markers of some 7
centimetres. Such placement resulted in 8 markers per shelf
and a total of 48 markers per bookcase.

After the experimental set-up, the gathering of book infor-
mation (i.e. global localisation and book recognition) was run
for several times. Several conditions were considered such as
misplaced books, occlusions, different positions in depth and
so on. The capture of several images from the same position
usually improves the results of book recognition. As overall
result, the average rate of book recognition and localisation
was 65 %, (see Figure 9).

Fig. 9. Some results of the book recognition through a bookcase
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VI. CONCLUSIONS

In this paper, we present the UJI aerial librarian robot, an
autonomous quadcopter that is able to globally localise books
in an ordinary library by leveraging an aerial vision approach
for localisation, navigation and book recognition. It is the first
such a robot ever, to the best of our knowledge.

Our experimental study was conducted in a real scenario.
After several tests with varying conditions, the accuracy rate
was 65 %. If we do not take into account the books with
unreadable tags (due to damaged tags or too thin book spines)
-since not even humans can read them- this rate increases to
72 %. We believe these are very promising results, for a first
ever proof-of-concept system, that opens the way to further
research along this path. In addition, images were processed
on line, allowing for real-time applications.

In addition, this work improves on state-of-the-art ap-
proaches to other applications of UAVs. First, our ad-hoc
control strategy for autonomous flight is aimed at overcoming
two main problems: an automated collision-free navigation in
an indoor environment avoiding interferences such as Wi-Fi,
or telephony; and an accurate book inspection through the
different bookcases composing the library, while a continuous
motion takes place. Our approach combines different computer
vision algorithms to accurately detect and extract the book tags
for their recognition. In this case, our contributions pertain to
the detection and recognition of books with different visual
features (e.g. colour and size), as well as the suppression of
requirements such as specific distance between camera and
book, book orientation, or camera orientation with respect to
the bookshelf.

For future work, higher quality visual sensors are required
for better performance. Even so, for a 65 % success rate, we
estimate that the inventory time would be reduced to a 42 % of
the fully manual time cost, considering that the required time
is around one order of magnitude smaller for the UJI Aerial
Librarian Robot.
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