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Abstract—Conventional object detection methods are in the
pixel domain and require full decoding with high computational
complexity. In this paper, we propose a fast object detection
method in the intra compressed domain of High Efficiency
Video Coding (HEVC), which significantly accelerates the object
detection process that uses compressed video images. Considering
the characteristics of various coding features, we select 3 types
of data for object detection, including partitioning depths, pre-
diction modes, and residuals. To achieve a more discriminative
representation of the residuals, we design an iterative restoration
algorithm that can generate the details of the original image
and reduce the noise in the residuals. Extensive evaluations on
multiple HEVC test sequences and large-scale object detection
dataset BDD100K confirm the effectiveness of our method. With
a slight reduction in detection accuracy, our compressed domain
detection system runs 1.8 times faster than the pixel domain.

Index Terms—Compressed domain video analysis, object de-
tection, HEVC, intra frame

I. INTRODUCTION

Video analysis is an important subject in the field of
computer vision. Conventional video analysis methods use
fully decoded images to extract features, which is also called
pixel domain video analysis. The required decoding steps in
the pixel domain are illustrated in Fig. 1, including entropy
decoding, inverse quantization (IQ), inverse transform (IT),
and intra reconstruction for I-frame or inter reconstruction
for P-frame. Pixel domain analysis methods have two major
disadvantages: 1) The computational cost of decoding is ex-
pensive; 2) The total decoding time is long, especially for the
I-frame. To tackle these issues, compressed domain analysis
methods have been proposed, using the data extracted with
partial decoding. As shown in Fig. 1, there is no reconstruction
step in compressed domain decoding. Many computer vision
tasks have been explored with compressed domain analysis
techniques, such as action recognition [1], [2], anomaly detec-
tion [3], object detection [4]–[15], object tracking [16], [17],
etc. We only discuss the object detection task in this paper.

According to the targeted compression standard, existing
compressed domain object detection methods are grouped into
3 classes: MPEG-based ( [4], [5]), H.264-based ( [6]–[8],
[13]), and HEVC-based ( [9]–[11], [14], [15]). In [4], coarse
object detection was first completed in the compressed domain
using Discrete Cosine Transform (DCT) coefficients and finer
detection of the object edge was then achieved in the pixel
domain with local inverse transform. Yokoyama et al. [5]
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Fig. 1. Decoding steps of the pixel domain and the compressed domain.

utilized motion cues represented with Motion Vectors (MVs)
to segment moving regions by classifying each coded block
into a moving or non-moving one. More types of compressed-
domain data were exploited in H.264-based methods, e.g., the
block size, the coded mode, and the quantization parameter
(QP) of each coded block. It was common in [6]–[8] that
MVs played the key role in object detection. Since the data
used by these methods only had the block-level resolution,
their detection results could only achieve block-level preci-
sion. Meanwhile, the generalized object detection shrank into
moving object detection. Completely differently, Wang et al.
[13] proposed to propagate the features of the pixel-domain
I-frame into the features of the following P-frames within the
same group of picture (GOP) based on MVs, which saved the
feature extraction time of P-frames. Compared with H.264,
HEVC introduced a more complex division method of coding
blocks and more prediction modes in intrapicture prediction,
which provided richer syntax elements for compressed-domain
object detection. Zhao et al. [9], [11] first trained a foreground-
background classifier to segment moving regions with MVs,
Coding Unit (CU) sizes, Prediction Unit (PU) sizes, and
coding modes (intra, inter or skip). They also designed a
second classifier to predict the actual class label (vehicle or
person) of the segmented regions. Alizadeh et al. [15] used
a Conditional Random Field (CRF) model to detect moving
regions, and their utilized data were assembled by MVs, CU
partitioning modes, and the number of consumed bits.

In summary, the existing methods that only use compressed
domain data have some disadvantages. First, since the data
they use only has the block-level resolution, they cannot
achieve pixel-level localization of objects. Secondly, excessive
reliance on MV will impair detection accuracy. In fact, MVs
are influenced by the target compression rate during encoding,
and they deviate from the actual motion information. Besides,
when the block in the P frame is coded with the intra type,
the MV disappears, which usually occurs in the discriminative
area of the object. Third, there is no available detection
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Fig. 2. The architecture of the proposed fast object detection method of using I-frame in the HEVC compressed domain.

method that only uses the compressed domain data of the I-
frame. In practical applications, some videos are coded with
the intra main configuration in which all frames are intra-
encoded. For these videos, the P-frame-based method becomes
useless, and the I-frame-based method is required.

In this paper, we propose a novel object detection method
in the HEVC intra compressed domain, which only requires
one compressed I-frame as input. It can be easily integrated
with existing P-frame-based methods to build a complete com-
pressed domain object detection system. The data extracted
from the compressed I-frame include the partitioning depths,
the prediction modes, and the residuals. Since the residuals
have the pixel-level resolution, our detection method achieves
pixel-level object localization. Furthermore, we propose an
iterative restoration algorithm to enhance the representation of
the residuals. Finally, we extensively evaluate our fast object
detection method on multiple HEVC test sequences and the
object detection dataset BDD100K [18], and demonstrate that
it can significantly accelerate the object detection procedure.

II. PROPOSED METHODS

A. Compressed domain Object detection using HEVC I-frame

The overall framework of the proposed I-frame-based object
detection method in the HEVC compressed domain is illus-
trated in Fig. 2. Only entropy decoding, IQ, and IT are required
for decoding. The syntax elements obtained by entropy decod-
ing contain the division and prediction information of all PUs,
which determine the partitioning depth and prediction mode.
Each PU has one partitioning depth and one prediction mode,
and we assign the same given value to all pixels in one PU for
up-sampling, which upgrades the block-level data into pixel-
level. After IQ and IT, the pixel-level intrapicture prediction
residuals are obtained and then restored through multiple
iterations. Finally, all data extracted from the compressed I-
frame are concatenated in the channel dimension. We choose
the fast one-stage object detector [19] for object detection.
Unlike [17] which also uses YOLO as an object detector in
the compressed domain, we use compressed domain data as
input while they employ the pixel domain RGB image.

During splitting coding tree block (CTB) into coding block
(CB) and CB into prediction block (PB), the number of
divisions increases as the local image contents get more

(a) Partition. (b) Prediction. (c) Residuals.

Fig. 3. Visualizations of data extracted from the HEVC I-frame.

complex, as shown in Fig. 3 (a). We regard the division times
of CTB into PB as the partitioning depth of the PU, which is
calculated as follows:

Partition(x, y) = log2(size(CTB)/size(PB(x, y))) (1)

Partition represents the partitioning depth of PB. x and y
are 2 position indexes for each pixel. Consistent with the
HEVC intra main configuration, the size L×L of a luma
CTB is chosen as L=64 and the minimum size of CB is 8
(only the luma component is used in our proposal.). In (1), the
size(CTB) is equal to 64 and the value of size(PB(x, y)) is
within {64, 32, 16, 8, 4}. Partition weighs the significance
of each PU because it reflects the information entropy of them.

There are a total of 35 modes supported in HEVC intrapic-
ture prediction, which are Planar, DC, and 33 Angulark.
We use the mode number defined in HEVC to represent the
prediction mode. The Planar mode is applied to areas with
smooth changes while the DC mode is for flat areas. The
Angulark prediction method sets 33 prediction directions to
achieve accurate prediction. Fig. 3 (b) visualizes the direc-
tionality of the Angulark prediction modes. It depicts that the
directional orientation of the prediction mode and the changing
direction of image content are greatly aligned.

In the coded bit-stream, the residual part occupies a huge
volume and retains a fine description of the original image.
As the prediction errors at the boundary areas are large, the
residuals save the edge information of the object, as shown in
Fig. 3 (c). To exploit more details of the original image, the
residuals are used as reference to perform image prediction,
and the predicted image is merged with the original residuals.
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Fig. 4. The proposed iterative restoration with n iterations.

We call this operation the restoration of residuals. Compared
with the original residual image, patterns in the restored image
are more complete and clear. It motivates us to use the restored
image as reference to restore, that is, iterative restoration.

B. The Iterative Restoration Based on Residuals

Patterns in the original residual image are incomplete due
to the removal of spatial redundancy during encoding, and the
representation extracted from residuals is too weak for robust
object detection. To tackle this issue, we conduct restoration
operation with multiple iterations as demonstrated in Fig. 4.
The proposed iterative restoration is also functioned below:

Ires(t+ 1) =

{
F (Ires(0)) + Ires(0), t = 0

F (Ires(t)) + Ires(0), t > 0 and t ∈ N
(2)

Ires(t) is the restored image at iteration t and Ires(0) is
the original residual image obtained after IT processing. F
represents the residual-based image prediction algorithm. At
each iteration, the original residual image will be merged into
the predicted image. The restored image can be regarded as
the enhanced version of residual image.

Compared with the predicted image or the original residual
image alone, the restored image aggregated by the two is more
reliable, providing more complete contours of the object and
reducing the noise in the residual image. Then, we use the
restored image as reference to perform image prediction again
to acquire more details of the original frame image. It should
be noted that the number of iteration is limited, and excessive
iteration will degrade the quality of the restored image. Fig. 5
visualizes the restored images under different iterations. When
the iteration number increases, both the subjective quality and
the objective quality indicated by Peak Signal to Noise Ratio
(PSNR) and Structural SIMilarity (SSIM) are enhanced.

Image prediction based on residuals acts as a generator of
image details, making the discontinuous edges of objects in
the original residual image continuous. The spatial continuity
of the residual image is used in the prediction algorithm. As
shown in Fig. 3 (c), the edge information of the original image
is retained in the residual, indicating the texture or contour of
the object. For the missing edge part, we believe that it can be
inferred from the edge part available in the residual. Through
residual-based image prediction, missing edges can be added
and existing edges can be enhanced.

The predicted value of each pixel is a weighted average of
selected reference samples. We fix the location of reference

samples with a mimic of the intrapicture prediction procedure
defined in HEVC. According to the position, division bound-
ary, and prediction mode of transform units (TUs), a mask
indicating the projected location for each pixel is obtained, as
well as the weights required for the calculation of the predicted
value. The prediction algorithm F is decomposed as follows:

R(x, y; t) = Ires(t− 1)(M(x, y)) (3)

Ipred(x, y; t) =

num(W (x,y))∑
n=1

W (x, y)[n] ∗R(x, y; t)[n] (4)

R(t) represents the reference samples required for each pixel
in the tth image prediction, and is composed of the (t− 1)th
restored residuals. Ipred(t) is the predicted image of iteration
t. W and M are weights and the projection mask, and they
are only related to the divisions and prediction modes of TUs.
x and y are 2 position indexes of each pixel. W (x, y) and
M(x, y) are two lists, and their lengths are the same, which
is equal to the number of reference samples of pixel (x, y).

Through (2), (3), and (4), it can be inferred that all pixels
are processed simultaneously in each restoration. The proposed
iterative reduction is a parallel operation, which can be accel-
erated by hardware. Therefore, the time cost of restoration is
small compared with the time cost of decoding.

III. EXPERIMENTS

A. Experimental Settings

Runtime. The decoding process is based on the HEVC
reference software HM16.9 [20], and YOLO detector [19] is
integrated into the HM project. Since video resolution and
QP affect the decoding time, we conduct runtime experiment
on multiple HEVC test sequences with 4 video resolutions
{832x480, 1024x768, 1920x1080, 2560x1600} and 2 QPs
{22, 32}. The acceleration on the object detection dataset
BDD100K is also experimented with. Our heterogeneous
system includes the Intel Xeon Gold 6134 CPU for decoding
and the Nvidia GeForce RTX 2080 GPU for detection.

Accuracy. The large-scale dataset BDD100K [18] contains
10 classes of objects, of which 69, 863 are used for training
and 10,000 for validation. All images are 1280x720 in size and
stored in JPEG format. To convert them to HEVC compres-
sion standard, we decode all pictures with ffmpeg and then
compress them with HEVC intra main encoding. Hyper-
parameters used for training are consistent with the scratch
in [19] and the training process is the same for all methods.

B. Runtime Analysis

Since related works [9]–[11], [14], [15] only provided
experimental results for P-frames and our method only focus
on the I-frame, it’s hard to make an aligned comparison
between us. So, we demonstrate the acceleration performance
of our method by comparing the total runtime of the pixel
domain and the compressed domain, as recorded in Table I.
Below is the calculation method of the time saved:

Tsaved = 1− (Tcompressed / Tpixel) (5)
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Fig. 5. Visualization of the restored images based on the proposed iterative restoration method. From left to right are the original residual image, 4 restored
images and the original grayscale image. Quantified indicators of the image quality are attached below each image.

TABLE I
THE RUNTIME COMPARISON BETWEEN COMPRESSED DOMAIN AND PIXEL DOMAIN. THERE ARE 3 TYPES OF TIME MEASUREMENT RESULTS, LABELED

AS {Tdecoding , Tdetection ,Ttotal}. THE DATA PROCESSING TIME OF THE COMPRESSED DOMAIN IS INCLUDED IN ITS Tdecoding PART.

QP Sequence Resolution Pixel domain(ms) Compressed domain(ms) Time Saved(%)

Tdecoding Tdetection Ttotal Tdecoding Tdetection Ttotal Tdecoding Ttotal

22 BasketballDrill 832x480 37.22 22.04 59.26 19.00 21.77 40.77 48.95 31.20
22 ChinaSpeed 1024x768 64.50 23.93 88.43 31.57 26.97 58.54 51.05 33.80
22 ParkScene 1920x1080 173.23 29.87 203.10 99.97 29.17 129.14 42.29 36.42
22 PeopleOnStreet 2560x1600 325.17 38.39 363.56 169.84 37.16 207.00 47.77 43.06
22 BDD100K 1280x720 55.65 33.18 88.83 28.08 28.31 56.39 49.54 36.52

32 BasketballDrill 832x480 24.66 21.14 45.80 10.06 20.12 30.18 59.21 34.10
32 ChinaSpeed 1024x768 50.17 24.98 75.15 22.27 26.27 48.54 55.61 35.41
32 ParkScene 1920x1080 120.58 31.93 152.51 55.52 30.90 86.42 53.96 43.33
32 PeopleOnStreet 2560x1600 250.55 40.85 291.40 109.80 36.39 146.19 56.18 49.83
32 BDD100K 1280x720 43.29 30.66 73.95 20.47 24.34 44.81 52.71 39.41

For compressed domain method, as we hope to obtain higher
detection accuracy, the iteration number of restoration is set
as 20. Besides, the detection in the compressed domain takes
a little less time than the pixel domain, which may be that the
compressed data contains more zeros.

For middle resolution 480P, the time saved is 31.2%
(QP=22) and the acceleration is 1.45 times. For high-definition
1080P sequence, a 1.8x speedup is obtained (QP=32). When
the resolution reaches 1600P, our method can achieve an
acceleration of more than 1.8 times. This is because the
acceleration is determined by the ratio of time spent on entropy
decoding and intra reconstruction respectively. Considering the
trade-off between the acceleration and the detection accuracy,
the optimal QP is 22, as shown in Fig. 7. Runtime results in
Table I demonstrate that the process of object detection has
been significantly accelerated with our method.

C. Accuracy Analysis

Comparison with pixel domain. To prove the feasibility
of our method, we test the detection accuracy on a large-
scale object detection dataset BDD100K using the standard
mean average precision (mAP) metric. Images in BDD100K
are sampled from complex and realistic traffic scenes. Exper-
imental results are provided in Table II. The method using

TABLE II
THE MAPS OF DIFFERENT METHODS ON THE DATASET BDD100K

Input mAP0.5(%) mAP0.5:0.95(%)

Ires(t=0) 48.90 26.47
Ires(t=1) 49.34 26.80
Ires(t=5) 50.07 27.16
Ires(t=10) 50.46 27.44
Ires(t=20) 50.70 27.68

Igray 54.75 30.24
Irgb 57.12 31.62

RGB or grayscale image belongs to the pixel domain, and
the others belong to the compressed domain (QP=22). The
detection accuracy of the RGB image is the highest, and the
original residual is the lowest. The difference between the two
is 8.22% and 5.15%. After restoring the residuals 20 times,
the accuracy is improved by 1.80% and 1.21% respectively,
and the performance gap with RGB is reduced to 6.42% and
3.94%. Fig. 6 is the visualization of object detection in the
pixel domain and compressed domain.

Quantization step length. With the increase of QP, the vol-
ume of residuals in the bitstream decreases, and the detection
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(a) Detection of dense objects. (b) Better in compressed domain.

Fig. 6. Visualization of object detection. For each example, the pixel domain
is on the left and the compressed domain is on the right.

Fig. 7. The relationship between detection accuracy mAP and QP.

accuracy will be affected. The relationship between QP and
detection accuracy mAP is depicted in Fig. 7. The accuracy
first rises gently and then drops sharply. When QP is relatively
high, the useful information contained in the residuals will be
little. And more small-value noise will appear in the decoded
residuals and degrade detection accuracy as QP is very low.

IV. CONCLUSION

In this paper, we propose a novel fast object detection
method in the HEVC intra compressed domain. Multiple types
of compressed data that help detection are exploited, including
the partitioning depths, the prediction modes, and the residuals.
We also design a fast restoration method to enhance the repre-
sentation of residuals. This operation supports parallel process-
ing and can be executed iteratively. Finally, we choose multiple
HEVC test sequences and a large-scale object detection dataset
BDD100K for convincing verification. Experimental results
about runtime and detection accuracy confirm the effectiveness
of our proposals. As I-frame could exist in any compressed
video, our method can be integrated with other P-frame-based
methods, and it only requires one independent I-frame. In
the future, our research will be extended to the Versatile
Video Coding (VVC) compression standard, and the detection
method of using compressed P-frames will be included.
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