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Abstract—Autonomous Unmanned Aerial Vehicles (UAVs, or
drones) are being increasingly employed to assist in many tasks,
typically in collaboration with humans. Since most drones are
equipped with RGB cameras, a typical way of visual interaction is
through human hand gestures. Thus, this paper examines a com-
mon, two-stage algorithmic framework for gesture recognition,
suitable for execution on any camera-equipped UAV with embed-
ded AI capabilities. First, a fast 2D human body pose estimation
Deep Neural Network (DNN) extracts 2D skeleton information
from the input video frames. Then, these per-frame skeletons that
have been computed over a temporal window are fed to a separate
classifier, which outputs the final gesture prediction. However, no
exhaustive quantitative comparisons have been conducted up to
now in order to specify the best-performing algorithmic ingredi-
ents in the context of this framework. Therefore, we investigated
and experimentally evaluated various possibilities for 2D skeleton
information utilization, as well as for gesture classification itself,
in order to identify the ideal combination for optimal efficiency.
Using the empirically best approach, we achieved increased
gesture recognition performance on two challenging datasets,
when compared to competing relevant methods, at a runtime
advantage on embedded AI compute hardware.

Index Terms—Gesture recognition, Autonomous drones, Hu-
man Robot Interaction, Deep Neural Networks, Human pose
estimation

I. INTRODUCTION

Human-Unmanned Aerial Vehicle (UAV) collaboration of-
fers significant advantages over traditional working methods
in many industries, mainly due to the drones’ ability to reach
places that are inaccessible to humans and to their aerial point-
of-view. Furthermore, UAVs are cost-effective and easy to
deploy, have quick response times and deliver rather accurate
results. Despite the recent advances on autonomous UAV
operation, interaction between humans and the collaborating
drones during a work session is still a necessity, in order to
enable humans to give specific instructions to the UAVs. In
addition, drones should also be able to interpret human actions
to ensure their safety, e.g., by warning a human worker about a
dangerous action or maintaining a safe distance between them.

This human-UAV communication can be effectively real-
ized through autonomous human action/gesture recognition.
Given a sequence of video frames captured from an RGB
camera, action/gesture recognition methods aim to predict
action/gesture classes that correspond to a predefined set of
actions/gestures. However, this is not always an easy task,
as the human performing actions/gestures may appear in
different working scenes and under varying scale, clothing and
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lighting conditions, which significantly affect the performance
of action/gesture recognition methods.

Skeleton-based approaches [1]–[6] manage to overcome
these challenges, as instead of the RGB videos frames, they act
on extracted human skeletons to perform gesture recognition,
which do not suffer from the aforementioned appearance
variations encountered in RGB videos. The human skeleton
information in this case can be obtained by applying human
pose estimation methods [7], [8] on the RGB video as a
preprocessing step. Following this approach, several action
recognition methods utilize 3D human skeletons [4], [5],
[9] to capture joint dependencies in 3D space and extract
correlated features for action/gesture recognition, in contrast
to raw image-based methods [10]. However, using the 3D
skeleton as input can be problematic due to scale, rotation and
translation variations. On the other hand, 2D skeletons can be
more robustly extracted from RGB videos using 2D human
pose estimation methods [7], [8], offering a more reliable data
source for action/gesture recognition than 3D skeletons.

While several 2D skeleton-based action/gesture recognition
methods have already been proposed [1], [6], [11] in the litera-
ture, they mainly focus on designing an efficient action/gesture
classification model that acts on the 2D skeleton information,
paying less attention to the importance of the 2D skeleton
information itself. Ad hoc solutions are typically followed,
both for the classification model and for the form 2D skeleton
information is fed to and utilized by it (which we call “skeleton
information type”). In contrast, in this work we show that 2D
skeleton information type has a big impact on the performance
of such skeleton-based action/gesture recognition methods,
which is equal or even greater than that of the classifier’s
complexity.

Thus, we conducted a thorough set of quantitative compar-
isons aiming to specify the best-performing options for 2D
skeleton information utilization and for gesture classification
itself, using a common algorithmic setup. In the first step,
a real-time 2D human pose estimation Convolutional Neural
Network (CNN) [8] is employed to extract the most appropri-
ate type of 2D skeleton information from RGB videos. This
information is then given to a very simple gesture classification
model, from which the final gesture predictions are obtained.
By using the most suitable type of 2D skeleton information,
our simple gesture classifier outperforms more sophisticated
action/gesture recognition approaches, while also running con-
siderably faster on embedded AI compute hardware.

In summary, this work offers the following contributions:
• a systematic experimental evaluation of various possibil-
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ities for 2D skeleton information representation and for
gesture classification, including a novel truncated upper-
body-only 2D skeleton representation,

• a simple, fast and effective two-step gesture recognition
method, composed of the algorithmic ingredients that
jointly performed best and a recent 2D skeleton estima-
tion approach that has not been used before for gesture
recognition.

The proposed method achieves state-of-the-art performance
in two relevant public datasets, despite relying on a very sim-
ple gesture classification component. This fact highlights the
importance of the 2D skeleton information type in skeleton-
based gesture recognition.

II. RELATED WORK

3D skeletons have been widely utilized for action/gesture
recognition, as they can provide rich information about body
motion in 3D space [12]–[14]. However, accurate 3D skeletons
are hard to obtain from RGB videos, while acquiring them
through RGB-D cameras often leads to very noisy results,
hampering gesture recognition accuracy.

On the other hand, accurate 2D skeletons can be very
efficiently obtained from RGB videos due to the increased
robustness of 2D human pose estimation methods [7], [8],
[15] and be exploited for action/gesture recognition. More
specifically, [1] utilized 2D skeletons to compute motion
features and combine them with appearance features in order
to achieve increased action recognition performance. Similarly,
2D skeletons were utilized in [6] to encode slow and fast body
joint movements in an action and compute pairwise body joint
distances, which were exploited to improve action recognition
performance. Moreover, the method of [11] was also based on
2D skeletons, which are processed by a two-stream network
to recognize actions even under heavy occlusions. While the
proposed method in this paper also utilizes 2D skeletons for
gesture recognition, we additionally focus on the 2D skeleton
extraction process: we aim to show that the extracted 2D
skeleton information type, i.e., the specific form in which 2D
skeleton information is fed to the gesture classifier, is crucial
for optimizing accuracy.

Another important issue in skeleton-based action/gesture
recognition is the modeling of the temporal dynamics of an
action/gesture. This is usually performed by an action/gesture
classifier that processes the extracted skeleton information.
Over the past years, many different action/gesture classifiers
have been proposed in the literature. For example, a Fourier
Temporal Pyramid (FTP) was utilized in [16], in order to
model the temporal dynamics of the extracted body joint
positions. Similarly, FTP was used along with Dynamic Time
Wrapping (DTW) in [13] to address specific issues, such as
noise. Subsequently, using a different approach, [17] used
histograms to represent the 3D human skeletons, which were
then given as input to a discrete Hidden Markov Model
(HMM) [18] to recognize actions/gestures. HMMs were also
utilized in [19] to predict action sequences from high level
skeletal features.

Despite the success of FTP, DTW and HMM in temporal
dynamics modeling, many methods that utilized Long Short-
Term Memory neural networks (LSTMs) [20] have emerged
in the last few years, demonstrating superior performance.
For example, a hierarchical LSTM network architecture was
proposed in [14] to separately model the temporal dynamics
of the lower-body and the upper-body, which were later
combined together to obtain the final predictions. Having
the same goal in mind, [21] proposed an end-to-end deep
LSTM network. Subsequently, a two-branch stacked LSTMs
network architecture for action recognition was introduced in
[11], which acted on 2D human skeletons. Furthermore, [22]
exploited the ability of LSTMs to use different step-sizes and
model various attributes by introducing an ensemble of short-
term, medium-term and long-term Temporal Sliding LSTMs
for skeleton-based action/gesture recognition.

The approaches described above are rather involved. In
contrast, in this paper we show that even when a very simple
and fast Multi-Layer Perceptron (MLP) [23] is employed as
the gesture classifier, state-of-the-art accuracy can still be
achieved, given the proper 2D skeleton information type as
input.

III. TWO-STEP GESTURE RECOGNITION
The gesture recognition setup we investigate in this paper

is a common, modern, two-stage framework. First 2D human
pose estimation is performed per video frame, in order to
extract 2D skeleton information from RGB videos. Then,
the extracted information is aggregated along a temporal
window and passed on to the second classification step, which
outputs the final predictions. This two-step approach raises two
important questions: a) what is the most suitable 2D skeleton
information type for gesture recognition, and b) what final
classification model should be used to obtain optimal results?
Below, we aim to answer both of these questions.

A. 2D Human Pose Estimation and 2D Skeleton Representa-
tion

2D human pose estimation algorithms predict the pixel
coordinates of visible human body joints on a 2D image, sup-
porting only joints belonging to a predefined set. The proposed
method is an instance of a common, state-of-the-art framework
for gesture recognition, where the outputs of such an algorithm
across a number of video frames are exploited as inputs
to a classifier, which then predicts the currently performed
gesture’s class label. In order to thoroughly investigate this
framework, 2D human pose estimation CNN [8] is adopted for
the initial 2D skeleton extraction step, since it provides rather
accurate 2D skeleton information in real-time and can be easily
combined with any classifier, as required by the overall two-
step process. Note that this 2D human pose estimation CNN
has not been previously employed for gesture recognition.

Let X be an input RGB video frame of resolution M ×N
and S be the 2D human pose estimation CNN used to extract
the 2D skeletons. A 2D skeleton can be defined using the body
joints representation {j1, j2, . . . , jK}, where K is a predefined
number of body joints that constitute the 2D human pose and
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S Gor or or Gesture label

Fig. 1. The two-step process utilized in the proposed gesture recognition method. First, the 2D human pose estimation CNN S is used to extract 2D skeleton
information from each input video frame. Then, in the second step, the gesture classifier G acts on the extracted 2D skeleton information to predict a gesture
class label for each input sequence.

each body joint jk ∈ N2, k = 1, . . . ,K is represented by
the pixel coordinates on the 2D input image: jk = [ik, jk]

T ,
ik = 0, . . . ,M and jk = 0, . . . , N . The employed 2D
human pose estimation method S outputs the final body joints
predictions in an implicit manner. That is, instead of directly
predicting {j1, j2, . . . , jK}, S predicts 2D body joint heatmaps
{H1,H2, . . . ,HK} of resolution M ×N , one for each body
joint in the set. Each heatmap Hk encodes the 2D location
of the corresponding body joint by using a 2D Gaussian
function centered at the 2D position of the body joint in the
input video frame. Then, the 2D pixel coordinates of each
body joint can be easily obtained in a post-processing step,
by simply choosing the (ik, jk) pairs with the highest heat
value. Therefore, the body joint heatmaps can be utilized as
an alternative 2D skeleton representation.

As a result, two main alternative types of 2D skeleton
information representation can be identified. The first option is
to represent 2D skeletons using the 2D body joints pixel coor-
dinates {j1, j2, . . . , jK}, while the second option is to use the
superposition of the body joints heatmaps {H1,H2, . . . ,HK},
Hs. Since humans usually use their hands to perform gestures,
we also investigate if it is beneficial for gesture recognition to
use only the information of specific body joints. Hence, while
S is capable of predicting the full human skeletons that are
composed of 16 body joints (three for each leg and arm, and
one for each of the pelvis, thorax, neck and head), we also
define a truncated 7-joint skeleton that considers only specific
upper body joints (two arms and thorax).

Thus, overall, we investigate four different types of 2D
skeleton information to be fed to the gesture classifier: two
for the list-of-pixel-coordinates representation and two for
the alternative heatmap representation. An input video frame
example and visualizations of the corresponding four 2D
skeleton information types can be seen in Fig. 1. Notably,
a full list-of-pixel-coordinates 2D skeleton representation has
previously been utilized in [1], [6], while [11] divided the full
list in upper and lower body joints sets, before processing them
separately. A heatmap 2D skeleton representation was utilized
in [24] to create body shape evolution images for action
recognition. To the best of our knowledge, a truncated upper-
body-only 2D skeleton, either in list-of-pixel-coordinates or
in heatmap form, has not been employed before for gesture
recognition under a deep neural setting.

B. Gesture Classifier and the Unified Two-step Gesture Recog-
nition Process

The 2D skeleton information obtained from the 2D skeleton
extraction step is consequently utilized in the gesture classi-
fication step to predict gesture class labels, where each label
corresponds to a unique gesture from a predefined set of C
different gestures.

Let St = S(Xt) be the output of the 2D skeleton extraction
step for the input video frame at time step t. The gesture
classification model G receives as input a sequence of 2D
skeletons {St0 ,St0+1, . . . ,St0+T }, where T is the length of
the sequence, and aims to predict a unique gesture class label
for the video frames {Xt0 ,Xt0+1, . . . ,Xt0+T }. The main
purpose of this paper is to experimentally show that even
a very simple gesture classifier can output highly accurate
results, when being fed the appropriate type of 2D skeleton
information. Therefore, we investigate the performance of
the overall algorithmic framework when using three simple
alternatives for the classifier: a HMM, an LSTM and an MLP
model.

The utilized HMM model consists of C separate 3-state
models, one for each gesture class, while the LSTM model is
composed of an LSTM cell followed by a fully connected
layer and the final classification layer. Similarly, the MLP
model consists of two fully connected layers and the final
classification layer. In addition, BatchNormalization [25] and
Dropout [26] are employed for the LSTM and MLP models.

Thus, the unified algorithmic pipeline which we investigate,
as an instance of the common 2D skeleton-based gesture
recognition framework, consists of both the 2D human pose
CNN S and the gesture classification model G, interlinked in
a sequential manner, as illustrated in Fig. 1. In a real-world
scenario, when a new video frame Xt becomes available, S
processes it to extract the 2D skeleton information St, which
is temporarily stored along with its time step t. This process
is repeated until the t + T th video frame Xt+T is processed
and the t + T th extracted skeleton St+T is stored. Then, the
extracted skeleton sequence {St, . . . ,St+T } is given as input
to G to predict the final gesture class label. Alternatively, the
proposed method can also operate under a sliding time window
setting. In this case, a gesture class label is predicted using the
sequence {St−T+l, . . . ,St−1,St,St+1, . . . ,St+l−1}, where l
is the number of the new video frames used to update the
sequence. In both scenarios, 2D skeleton information across
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TABLE I
EVALUATION OF ALL POSSIBLE COMBINATIONS OF 2D SKELETON

INFORMATION TYPES AND GESTURE CLASSIFIERS ON A SUBSET OF AUTH
UAV GESTURE. BEST OVERALL CONFIGURATION IS MARKED WITH BOLD

TEXT, WHILE BEST FROM EACH GESTURE CLASSIFIER CATEGORY IS
UNDERLINED.

Method Model type 2D skeleton type Accuracy

HMM16j HMM 16 joints pixel coords 57.7%

HMM7j HMM 7 joints pixel coords 66.5%

HMM16jhm HMM 16 joints heatmap 35.9%

HMM7jhm HMM 7 joints heatmap 56.7%

LSTM16j LSTM 16 joints pixel coords 63.2%

LSTM7j LSTM 7 joints pixel coords 68.1%

LSTM16jhm LSTM 16 joints heatmap 60.4%

LSTM7jhm LSTM 7 joints heatmap 64.4%

MLP16j MLP 16 joints pixel coords 69.1%

MLP7j MLP 7 joints pixel coords 70.2%

MLP16jhm MLP 16 joints heatmap 56.8%

MLP7jhm MLP 7 joints heatmap 66.7%

T consecutive video frames is fed sequentially over time to
the HMM and to the LSTM, while in the case of MLP these
T skeleton representations are concatenated to a single input
vector.

IV. EXPERIMENTAL EVALUATION
The main goal of this paper was to extensively evaluate

the framework described in Section III, including all possible
combinations of alternative 2D skeleton information type and
gesture classifiers, in order to identify the optimal combi-
nation. The best performer under the discussed framework
instance is proposed as an efficient and accurate method for
gesture recognition, able to be executed on embedded, on-
drone compute hardware.

The 2D human pose CNN S and the gesture classifier
G were trained independently. That is, S was first trained
on the MPII Human Pose [27] dataset for the 2D human
pose estimation task. Then, using the trained S model in the
unified two-step process, G was trained separately for gesture
recognition using the outputs of S. Note that the four different
2D skeleton information types analyzed in Subsection III-A
can be obtained by processing the outputs of S accordingly.
Two gesture recognition datasets were used to evaluate the
various combinations: AUTH UAV Gesture [28] and UAV-
Gesture [29]. AUTH UAV Gesture consists of 4930 videos
(80/20 split for training and testing) of six gestures (Cross
arms, Extend one arm to the side, Palms together, Raise one
arm upwards, Thumps up, V shape). It is a very challenging
dataset due to large viewpoint variations and the fact that three
of the six gestures (Raise one arm upwards, Thumps up, V
shape) appear very similar. On the other hand, UAV-Gesture
dataset is composed of 119 UAV-captured videos, containing
13 gestures performed by 10 subjects in total. T was set to 15
in all experiments.

First, by utilizing the trained S model, we evaluated all
possible combinations of 2D skeleton information types and

TABLE II
COMPARISON BETWEEN THE PROPOSED METHOD AND COMPETING

ACTION/GESTURE RECOGNITION METHODS ON AUTH UAV GESTURE
[28] AND UAV-GESTURE [29] DATASETS. BEST RESULTS IN BOLD.

Method AUTH UAV
Gesture [28]

UAV-Gesture [29] Runtime (ms)

P -CNN∗ [1] — 91.9% —

DD-Net16j [6] 73.24% 88.93% 175.89 ms

DD-Net7j [6] 74.18% 91.51% 169.66 ms

MLP16j (ours) 75.93% 93.57% 141.44 ms

MLP7j (ours) 76.17% 94.84% 139.13 ms
* Results were directly cited from [29].

classifiers (HMM, LSTM, MLP) in terms of gesture clas-
sification accuracy, using a subset of AUTH UAV Gesture.
The comparison results reported in Table I show that the best
performing configuration is the MLP classifier acting on the 7-
joint-pixel-coordinates 2D skeleton, outperforming the second
best and all other configurations by a margin over 1% and
2%, respectively. The 7-joint-pixel-coordinates 2D skeleton
representation performed best for all gesture classifiers, as
gestures in AUTH UAV Gesture are executed using upper body
movements and thus the lower body joints may simply act as
noise for gesture recognition. The MLP model outperformed
the HMM and LSTM ones, as it can more efficiently handle
low-dimensional inputs (7 joints × 2 pixel coordinates = 14).

Our best performing model is then compared against com-
peting, similar action/gesture recognition models P -CNN [1]
and DD-Net [6] on the full AUTH UAV Gesture and UAV-
Gesture datasets. Note that the proposed and DD-Net models
are tested with both the 7-joint-pixel-coordinates and 16-
joint-pixel-coordinates 2D skeleton representations obtained
from S. For P -CNN we directly cite the results for UAV-
Gesture reported in [29], where the 2D skeleton is extracted
using OpenPose [15], since no P -CNN implementation was
available to us. The comparison results presented in Table II
show that the proposed method is more accurate than DD-
Net and P -CNN in all cases, consistently outperforming
DD-Net (in both datasets) by a margin of up to 3.5% and
P -CNN (in UAV-Gesture) by 2.8%.

Apart from gesture classification accuracy, mean inference
speed over T video frames (in ms) is also reported in Table
II, in order to evaluate the execution speed of each classifier
(without S). Evaluation was performed on a nVidia Jetson
Xavier embedded AI compute board, suitable for on-drone
processing. Evidently, the proposed MLP-based model runs
faster than DD-Net, which is to be expected since it only
consists of three neural layers. Finally, the mean per-frame
inference speed of S was measured to be 39.52 ms, meaning
that the mean execution speed of the proposed unified two-step
gesture recognition method across T = 15 video frames is T ·
39.52+139.13 ms, while in the sliding window operation case
(assuming that the first 15 video frames are already available)
the mean execution speed is l · 39.52 + 139.13 ms.

The results presented in Tables I and II jointly indicate that
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when the most appropriate 2D skeleton information type can
be effectively extracted, a very simple gesture classification
model is enough for obtaining good test-time accuracy, out-
performing more complex models and running significantly
faster. The proposed two-step method MLP7j offers this ad-
vantage, as it can simultaneously extract the most effective 2D
skeleton information from RGB videos and perform gesture
recognition, leading to increased inference speed and gesture
classification accuracy.

V. CONCLUSIONS

In this paper, a novel, fast, two-step gesture recognition
method suitable for human-UAV communication is proposed,
consisting of a 2D skeleton extraction step and a gesture classi-
fication step. First, a real-time 2D human pose estimation CNN
is utilized to extract 2D skeleton information from each input
video frame. These skeletons are post-processed in a novel
manner and accumulated over a number of consecutive video
frames. The results are fed to a simple gesture classifier that
predicts the final class label. In order to design the proposed
method, we systematically investigated and experimentally
evaluated various possibilities for 2D skeleton information
utilization, as well as for gesture classification itself, in order
to identify the ideal combination for optimal efficiency. The
proposed method adopts the algorithmic components shown
to produce optimal results, as well as a recent 2D body pose
estimation algorithm that has not been previously employed for
gesture recognition. As a result, it outperforms all competing
methods, in terms both of gesture recognition accuracy and
of required runtime on an embedded AI compute board for
on-drone execution. This indicates that even a very simple
classifier is sufficient for gesture recognition, when appropriate
2D skeleton information type is fed to it.
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