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Abstract—Body and head orientation estimation is important
in many applications such as pedestrian protection, movement
prediction, robotics, and behavioral analysis. In this paper, we
propose a system that uses privacy preserving LiDAR sensors to
estimate body and head orientations of people, with a motivation
of providing guidance feedback to individuals who face non-
verbal social communication challenges in workplace settings,
such as some individuals with Autism Spectrum Disorder (ASD).
For example, people who tend to look away from a speaker could
be coached on the importance of periodically making eye contact
and showing overt attention, or could be discreetly provided with
real-time feedback based on present behavior. We developed mod-
els for body and head orientation estimation, using low-resolution
point cloud data from two LiDAR sensors. The body orientation
estimation model uses an ellipse fitting method while the head
orientation estimation model is a pipeline of geometric feature
extraction and neural network-based regression. Compared with
other body and head orientation estimation systems using RGB
cameras, our proposed system uses LiDAR sensors to preserve
user privacy, while achieving comparable accuracy. To the best
of our knowledge, this is the first body and head orientation
estimation system using depth sensors for which the sensors do
not require a specified placement in front of the subject. Our
model achieves a mean absolute estimation error of 8.4 degrees
for body orientation and 16.5 degrees for head orientation.

Index Terms—Body orientation, head orientation, LiDAR sen-
sor, point cloud, autism spectrum disorder

I. INTRODUCTION

Body and head orientation estimation are fundamental chal-
lenges in computer vision, mainly investigated in the context of
pedestrian protection and movement prediction [1], along with
applications in robotics [2] and behavior analysis [3]. Body
and head orientation and movement provide important means
of nonverbal communication for fluent social interaction. Some
people with social communication deficits (for example, some
individuals with Autism Spectrum Disorder (ASD)) struggle to
provide normative nonverbal communication cues, such as pe-
riodically making eye contact with the speaker and maintaining
an overall appropriate body orientation towards them [4]. Lack
of workplace-appropriate social communication skills are one
reason that high-functioning young adults with ASD have high
unemployment rates despite often holding college degrees,
average to high IQs, and various useful skills. In this paper, we
focus on the problem of body and head orientation estimation
from a surveillance viewpoint, with the primary motivation of
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providing guidance feedback to individuals who face social
communication challenges in typical workplace settings.

Most works on body and head orientation estimation use
RGB cameras for their low cost [3], [5], [6], but RGB-D
cameras such as Microsoft Kinect and Intel RealSense have
also been used [7]–[10]. Available depth image-based models
using RGB-D sensors or LiDARs seemed to be good candi-
dates to solve our problem. However, these models require
the sensor to be placed in front of the person, with specific
optimal ranges for distance and height, which we will refer to
as a frontal setting. In contrast, our system does not require the
subject to appear head-on in front of the sensor. Our sensors
are placed near the ceiling, looking down at about 45 degrees,
and the subject can have arbitrary orientation in the conference
area; we refer to this setup as a surveillance setting. To the
best of our knowledge, there is no model for body and head
orientation estimation with depth cameras or LiDAR sensors
from a surveillance viewpoint. In general, surveillance settings
produce low resolution data. As the subject gets more distant
from the sensor, they are represented with fewer points in
a point cloud or fewer pixels in an RGB image. Especially
for head pose estimation, most models [9], [10] use high-
resolution 3D scans of the head, taken by a sensor close
to the subject. With such a setting, it is possible to capture
small facial geometric details of the nose tip, eye holes, and
chin, which can play a huge role for orientation estimation.
While those models are successful for high-resolution data,
their methods face challenges in our case, as the sensors are
unobtrusively distant from the people, and it is difficult to
identify small facial geometric features due to the decreasing
resolution and increasing noise with distance.

Our contributions in this paper include the development of
body and head orientation estimation models based on low
resolution point cloud data, generated by two indoor LiDAR
sensors from a surveillance viewpoint. Fig. 1 shows the system
overview. The LiDAR sensors in our system are specialized
for indoor use, and come with built-in functionality to detect
humans in the field of view. We stitch together the point
clouds from the two sensors, extract the upper bodies by
cropping a cylinder-shaped point cloud around each detected
person, and remove noise points. Then we extract features, fit
a least squares ellipse to determine the upper body, and use
a multi-layer perceptron based neural network regressor with
the extracted features to estimate the head orientation.
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Fig. 1. System overview.

II. RELATED WORK

Among the many RGB image-based models for body orien-
tation estimation which are generally in the context of smart
vehicles and robotics for human-robot interactions, there are a
few which match our type of surveillance setting. Chen et
al. [3] proposed a semi-supervised model on RGB images
to analyze behavior and attention based on estimated body
and head orientations of people waiting for luggage in an
airport. The authors of [5] and [6] proposed template matching
models that combine 2D images from multiple surveillance
viewpoints to make 3D orientation estimations. The few works
on body orientation estimation using depth sensors do not
use surveillance scenarios. Shimizu et al. [11] proposed a
body orientation estimation model which combines shape and
motion information, using a LiDAR sensor mounted on a
robot. The authors of [2] and [12] proposed models that use
depth along with color information.

Most papers on head orientation focus on estimating the
full head pose by estimating the three Euler angles, whereas
we only focus on estimating a direction angle, as other
dimensions are not important for our use case. As with body
orientation, the majority of models in the literature use RGB
images, but some use depth, and only a few consider the
task in a surveillance setting. The authors of [1], [3], [13]
proposed various models and surveillance settings for the head
orientation estimation task using RGB cameras. Following the
availability of consumer level depth cameras such as Microsoft
Kinect and Intel RealSense, various models [7]–[10] targeting
head orientation estimation using depth images were proposed.
However, similar to the body orientation estimation models,
the models listed above assume that the subject is in a frontal
setting, with the depth sensor in front of the person.

To the best of our knowledge, we are the first to estimate
body and head orientations using a depth sensor from a
surveillance viewpoint. Existing models are either RGB image
based on a surveillance setting, or depth image based on a
frontal setting.

III. METHODOLOGY

A. Data Collection and Preprocessing
We developed our models using two LiDAR sensors from

Hitachi Vantara [14]. We use the ToFv2 LiDAR sensor which

works based on the Time-of-Flight principle [15]. For data
collection, the sensors were placed on opposite ceiling corners
of a small conference room, looking down on an oval table.
The point clouds coming from the sensors are stitched together
using rotation and translation before processing. Then we use
the built-in human detection capability of the sensor software
to crop a cylinder-shaped boundary around each person’s point
cloud. The human detection capability allows us to process
each person in the environment separately at the same time,
and decreases the number of points to be processed by the
model. We further crop the point clouds to get the region of
interest, which includes the upper body and head. For each
subject, the cropping threshold for the upper body was set to
be the top 27% of their height (in a seated position).

We created a dataset from 15 subjects including men and
women with and without glasses and face masks, and with
varying hairstyles and heights. We collected the data one
subject at a time, while the subject sits in 8 different positions
around the oval table in the middle of the room. Guidance
arrows are placed on the table for each seat position and
each orientation direction to determine the ground truth, and
the point clouds are captured while each subject orients their
head towards 13 predetermined angles (-90 to +90 degrees,
in increments of 15 degrees). Thus, for each subject, we
attempted to collect 312 point clouds, corresponding to 8 seat
positions, 13 head orientation angle, and 3 repetitions. Because
a few repetitions were missed or the human tracking failed, we
ended with 295 point clouds per person on average. Our upper
body point clouds consist of about 1800 points on average,
varying between about 1500 and 2100 points per case. Our
resolution is low compared to the BIWI dataset [8], also used
in [9], [10], which contain around 10,000 points for just the
face of a person.

Estimating body and head orientation from LiDAR data is
a challenge as the sensor cannot capture the details of the
small region of interest from a distance of 1 to 4 meters.
Moreover, the point cloud data are noisy, especially from
hair and other complex features on the face. To mitigate this
problem, we apply a k-nearest neighbors-based noise removal
pre-processing step, where we remove a point from the point
cloud if the average distance between the point and its 10
nearest neighbors is larger than 40 millimeters.
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B. Body Orientation Estimation

The body orientation estimation model is a geometric model
which takes advantage of the ability to change the viewpoint
of a point cloud, and uses the birds-eye view of the room.
The cropped point clouds are projected onto the xy-plane (the
plane parallel to the ground). We exclude the head points by
removing all points within 20 centimeters of the top of the
head, and calculate the 2D ellipse that best fits the projected
upper body data points based on least squares error, with the
long axis of the ellipse representing the body axis. We use the
conic representation of an ellipse:

E(x, y) = ax2 + bxy + cy2 + dx+ ey + f = 0 (1)

The optimal coefficients are estimated following the approach
in [16]. The noise removal pre-processing step is important
for this procedure to work well, as noise points that are
generally on the edges may result in large squared errors and
significantly disturb the best ellipse fit.

After the body axis is determined, there remains the problem
of deciding which side of the ellipse is the person’s front. We
use the positions of the previously excluded head points with
respect to the center of the ellipse, based on the fact that a
person’s head is almost always in front of their body axis.

C. Head Orientation Estimation

For the head orientation estimation model, simple geometric
approaches were not sufficient as details of facial features are
not accurately captured by the sensors. We use a pipeline of
feature extraction and multi-layer perceptron-based regression.
The feature extraction is done after noise removal and ellipse
fitting to the upper body. The upper body ellipse divides the
head point cloud into four quadrants which produce supportive
features for the model, based on the point locations with re-
spect to the body center. Fig. 2 shows a projected human point
cloud, the optimal ellipse fit for body orientation estimation,
and the resulting four quadrants of the head.

The features we extract are the (x, y) coordinates of the
subject’s centroid in the sensor coordinate system, as well
as a number of features that use a subject-centric coordinate
system. These features are the principal components and the
basic distribution properties of the head points (mean, standard
deviation, minimum and maximum coordinates), the principal
components of the four quadrants of the head, the estimated
nose coordinates based on the centroid of the 10 furthest
projected points from the head center, and the axis lengths
and orientations of a separate ellipse fitting procedure on the
head points only.

We note that the cropped human point clouds vary widely
across the 8 different positions around the table in our data
collection setting, due to the positioning of the sensors and the
corresponding occlusion of some body parts. In each position,
it is likely that some features are informative while others
are ineffective. For example, in some positions, the estimated
nose position is almost the same regardless of how much the
subject turns their head from left to right. In other positions,
the principal components do not work well because the overall

Fig. 2. Least squares ellipse fitting for body orientation estimation via the
long axis of the fitted ellipse, which also determines the four quadrants of
the head relative to the body. Light blue points are projected upper body
points (shoulders and chest); dark blue, red, yellow and green points are
projected head points, representing the four quadrants.

rotation of the head is not well represented by the point
clouds. Therefore, we use a learning-based model, which is
able to learn the variations based on the relative position of
the subject and weight useful features, with robustness to the
low resolution, high noise and positional variations.

IV. RESULTS

We use two metrics to evaluate performance. The first is the
mean absolute error (MAE) between the model estimation and
ground truth. The body orientation estimation model produces
an MAE of 8.4 degrees over the whole dataset. MAEs with
respect to seating position are in Table I, where the seating
positions are as shown in Fig. 3. We observe that the average
MAEs of the subjects sitting in positions 2 and 6 are the
lowest; we surmise this low MAE arises because those subjects
are squarely facing one of the sensors and have their backs
squarely turned to the other sensor, so there would be large
body areas with good data capture. The model struggles when
large parts of the upper body are not visible to the sensors,
since missing points distort the fitted ellipse.

For training the head orientation model, we use leave-
one-out cross-validation, where the point clouds of each data

TABLE I
MEAN ABSOLUTE ORIENTATION ERRORS VS. SEATING POSITION

Position Body MAE Head MAE
P1 12.21 12.69
P2 4.47 14.96
P3 8.95 19.11
P4 6.93 15.77
P5 13.49 15.01
P6 4.63 17.48
P7 8.96 22.63
P8 7.12 14.57

Average 8.37 16.49

768



Fig. 3. (a) 8-person meeting scenario with a fixed speaker at the top who is assumed to be the main target of head orienting for the other
participants. (b) Appropriateness regions of head orientations for persons in Position 1 and Position 3 with respect to the speaker.

Fig. 4. Mean Absolute Error vs. Head Orientation Ground Truth

subject are the test set one time, and used in training otherwise.
The model has an average MAE of 16.5 degrees across 15
subjects. MAEs with respect to seating position are in Table I,
and MAEs with respect to ground truth angle are in Fig. 4.
While some papers achieve smaller errors on head orientation
estimation, they use either high-resolution 3D scans of the face
when the sensor is placed right in front of the person [7]–[10],
or an RGB camera [17].

The second evaluation metric aims at a social commu-
nication context, since one eventual goal of this work is
to coach people with ASD who struggle with nonverbal
communication in a conversation or a meeting. In a speaker-
listener scenario, we examine the subject’s head orientation
towards the speaker. Fig. 3 shows an example of an 8-person
meeting scenario with regions of appropriateness and non-
appropriateness. From a virtual coaching perspective, if the
body or head orientation of the subject is in the red region

Fig. 5. Confusion matrix of appropriateness evaluation.

for some length of time, a real-time alert could remind the
subject to maintain nonverbal contact with the speaker. The
green region means that the subject is maintaining appropriate
body and head orientations, and the yellow region might help
with coaching decisions based on more temporal information
from previous or following frames. In our experiments, we
set the directional range of appropriateness to be within 45
degrees, meaning that the limits for the green region would
be -22.5 and 22.5 degrees. We assumed that if the subject is
off from the speaker by at least 45 degrees (for some length
of time), the situation is inappropriate. Orientations between
22.5-45 degrees are neutral and action could be taken based
on temporal analysis. For example, the neutral situation could
be taken to be inappropriate if it occurs for more than 30
seconds. The temporal analysis is beyond the scope of this
paper; we examined single frame estimation results from the
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whole dataset. Fig. 5 shows the confusion matrix results from
our experiments. The results are based on 8 different scenarios
where we assumed that the speaker is in one of the 8 positions
around the table and the listeners are in the remaining 7
positions.

The number of false alarms (raising an alarm when the
subject is keeping appropriate orientations) is fairly low. Our
model is accurate in distinguishing between appropriate and
inappropriate situations, and most of the false predictions fall
into the neutral regions which will not cause huge errors in
our future application. In conjunction with behavioral coaching
experts, our next step will be the development of the virtual
coaching model, involving analysis of a sequence of point
clouds over time, and addressing, among other issues, when
and how to provide coaching feedback.

V. CONCLUSION

In this paper, we propose models for body and head orien-
tation estimation that work with low resolution point clouds
generated by two LiDAR sensors. The main motivation of this
work is to create a privacy-preserving system that could be
used as a virtual coach for people, such as some individuals
with ASD, who struggle nonverbal communication including
maintaining appropriate body and head poses during conver-
sations or meetings. To achieve this, we created a surveillance
scenario with LiDAR sensors placed near the ceiling of a
conference room and developed novel models that can estimate
the body and head orientations of the subjects from the low-
resolution point cloud data. Our body and head orientation
estimation models produce average error rate of 8.4 and 16.5
degrees, respectively. Our results are comparable to results in
the literature, although our models work with low-resolution
and noisy point clouds and without color information. The
proposed system is able to distinguish between appropriate
and inappropriate body and head orientations.

The proposed body and head orientation estimation models
can be used in various applications. We plan to extend our
models to become on component of virtual coaching to high-
functioning individuals with ASD who are seeking jobs, to
integrate them to workplaces. With the recent advances of
LiDAR sensors and declining costs, they are likely to become
more prevalent [18], [19] in stores and workplaces, thanks to
their privacy preservation aspect. When developing a virtual
behavioral coaching system, a main consideration is whether
the system will provide real-time alerts as inappropriate be-
haviors occur, and avoid alerts for appropriate behavior. While
the computational power is available to make estimations and
provide guidance in real-time with this model, the system
could also be used as a non-real-time social behavior analysis
tool for people with ASD by providing feedback based on their
overall display of attentiveness and non-verbal communication
performance in a conference. Other considerations include the
medium (smart watch notifications, vibrations, audio etc.) and
the content of the alerts or feedback.

Although outside of our immediate focus, the system could
also be modified for outdoor use using appropriate LiDAR

products, as assistants to security cameras. Various appli-
cations such as crowd analysis or protection of pedestrians
crossing streets could benefit from this type of system.
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