

Improvement on Intra Block Copy in Video Coding

with Reference Block Recompression

Lai Zhang1, Jun Wang2,3, Jiyuan Hu1, Pengjian Yang1, Fan Liang1,4, Feng Lai5
1School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China

2School of Microelectronics Science and Technology, Sun Yat-sen University, Zhuhai, China
3Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China

4Peng Cheng Laboratory, Shenzhen, China
5Zhuhai Unitech Power Technology Co. Ltd, Zhuhai, China

{zhanglai3, hujy23, yangpj5}@mail2.sysu.edu.cn, {wangj387, isslf}@mail.sysu.edu.cn, laifeng@ut.cn

Abstract—Intra Block Copy is a tool adopted in HEVC and

VVC extensions on SCC, it significantly improves the coding

efficiency of screen content materials. To reduce memory

consumption and decoder complexity, the reference region of

IBC in VVC is limited. In this paper, we propose a method that

recompresses the reference block of IBC, so that more reference

blocks can be stored while using the same memory space. This

allows IBC to expand its search range and results in BD-rate

reduction. The proposed method includes spatial prediction,

variable length coding, quantization, and two methods to realize

the IBC buffer with recompressed reference block. We test these

two methods in the reference software of VVC and achieve BD-

rate reduction of 1.8% and 4.0% on average respectively for

TGM test sequences.

Keywords—Reference Block Recompression, IBC, VVC,

HEVC, Lossy compression

I. INTRODUCTION

The demand for screen content video coding (SCC), such
as online meetings, online education, and cloud gaming, is
increasing during these years. To address the demand, many
tools like Intra Block Copy (IBC), Palette Mode (PLT),
Transform Skip Mode (TSM) have been adopted into SCC.
Intra block copy is the one with the highest efficiency among
these tools [1].

IBC is a tool firstly adopted in HEVC extensions on SCC
[2] and now widely applied to most recently developed video
coding standards [1] such as VVC. In IBC, block matching is
performed at the encoder to find the optimal block vector (or
motion vector) for each coding unit (CU). A block vector is
used to indicate the displacement from the current block to a
reference block, which is already reconstructed inside the
current picture [3].

To reduce memory consumption and decoder complexity,
the IBC in VVC allows only the reconstructed portion of the
predefined area including the region of current CTU and some
region of the left CTU [4], as reference area. This limitation
allows the codec to use the on-chip storage as the IBC buffer.
Fig. 1. illustrates the reference region of IBC Mode when the
CTU size is 128, each block represents 64*64 luma sample
units (the sizes mentioned later in the article all take luma
sample as the unit). A 64*64 unit like this is called Virtual
Pipeline Data Unit (VPDU) [3], which is defined as non-
overlapping units in a picture.

However, the memory size restriction reduces the coding
efficiency of IBC by about 10% [4] in BD-rate [5] reduction.
To reduce the loss caused by the limited memory size, one
idea is to expand the reference area without changing the size.

Inspired by Reference Frame Recompression (RFRC),
which is typically used in the motion estimation and motion
compensation process of inter prediction to reduce the
bandwidth and power consumption in power-aware devices,
we attempt to reduce the impact of memory size restriction
with recompression technology. The existing recompression
methods can be divided into two categories: lossless [7-13]
and lossy [14-20] recompression. To the best of our
knowledge, in our previous work [6], we are the first to
introduce recompression methods named Reference Block
Recompression (RBRC) to the IBC intra prediction. [6]
proposed a lossless recompression method, which compresses
the unfiltered reconstructed samples before storing them into
memory and decompresses the compressed data after fetched
back. This method can reduce the bandwidth on Memory Bus.

The RBRC method shows the potential in processing
reference blocks of IBC, but the downside of the lossless
RBRC is that the compression rate of lossless RBRC can’t be
guaranteed. Therefore, the compressed data needs to be stored
in fixed addresses, occupying the same memory space as
original data, which means that it can’t save the memory size.
The lossy RBRC we proposed in this article solves the
problem, quantization and compression rate judgment are
introduced into the RBRC to ensure that the compression rate
doesn’t exceed 50%. This allows the compressed data to be
stored in half of the original memory space, showing in Fig. 2.
Memory saving means that a buffer built with lossy RBRC

This work is supported by Key-Area Research and Development Program
of Guangdong Province(No. 2019B010135002), and partially supported by
Core & Key Industrial Technology Program of Zhuhai(No.
ZH22044702190085HJL)

Fig. 1. Current CTU processing order and its available reference
samples in current and left CTU

Reference area Unavailable

Curr

Curr Curr

Curr

Fig. 2. The original block and the compressed block in memory

16*16 block

…

Original block data Address

16*16 block

…

Compressed block data Address

data memory

x

x x

x/2

771ISBN: 978-9-0827-9706-0 EUSIPCO 2021

can store more reference blocks for the IBC under the
condition of the memory size restriction, and then improves
the effect of IBC and get the gain in BD-rate.

 The rest of this paper is organized as follows. In Section
Ⅱ, the new IBC buffer with lossy RBRC is introduced. Its
structure and workflow are explained. What’s more, the way
to achieve lossy RBRC is introduced, including spatial
prediction, variable length coding, and quantization. In
Section Ⅲ, the experiment result of encoder and decoder with
proposed method comparing to VTM 10.0 is given and
explained. The conclusion is present in Section Ⅳ.

II. PROPOSED METHOD

Refer to the processing of the IBC mode in VVC, a buffer
with the size of 128*128 is needed in the codec to store the
reference blocks required by the IBC mode. This allows the
hardware to use on-chip storage as a buffer, speeding up the
IBC mode, and keep complexity low. Based on this idea, we
propose to introduce Reference Block Recompression (RBRC)
technology into IBC without changing the memory size set for
IBC buffer in VVC, and replace the reference block in IBC
buffer with the compressed reference block, showing in Fig.
2, to expand the IBC mode reference area to improve the effect
of IBC mode.

A. New IBC Buffer Structure

The new IBC buffer we proposed deals with compressed
data instead of the original block of samples. It is divided into
three parts to store different data to help the codec to
compress/decompress and read/write the reference block:

 The BUF part is used to store the blocks compressed
by the RBRC method. The size is the total IBC buffer
size (128*128) minus the size occupied by CurrBUF
and CACHE. Its maintenance process is similar to the
IBC buffer in VVC [3].

 The CurrBUF part is to store the sample of the
reconstructed CU in the current VPDU during the
encoding and decoding process. These samples are
compressed and stored in the corresponding position in
BUF after the codec enters the next VPDU.

 The CACHE part is the cache between the new IBC
buffer and the prediction buffer of IBC CU. It stores
the data read from CurrBUF and BUF in the past. The
introduction of this part is mainly to improve the
encoding speed.

These are the components of our proposed new IBC buffer
with RBRC.

For the encoder, the IBC buffer needs to be accessed
frequently to obtain reference blocks during the motion
estimation process. To reduce the encoding time, two methods
are proposed to solve this problem based on the above

components, we call them method with cache and method
without cache.

1) Method with Cache: The workflow is showing in Fig.
3. In terms of getting a reference block, the IBC CU gives the
required referenced block’s position and reads the data from
the CACHE. If the CACHE doesn’t contain the data of
required block, it will decompress the required reference block
from BUF or copy from CurrBUF. Then the IBC CU gets the
block it needs. The CACHE reads in data that fills its own size
at one time, and the required reference block is located at the
upper-left of the read-in area.

In terms of storing reference blocks, the samples of
reconstructed CU in the current VPDU will first be stored in
the CurrBUF. When the codec is entering the next VPDU, all
the samples in CurrBUF will be compressed in the unit of
16*16 compression block and stored in the BUF according to
coordinate conversion rules. In the case that CU is larger than
VPDU, the process of compressing VPDU will be repeated to
save the reconstructed CU.

In most cases, CACHE has a square buffer area, with a
side length of VPDU size, and can works for CU of any size
in IBC mode. During the full search, which is used by CU not
larger than 16*16, the buffer area changes into a rectangle
with the high equal to 16 and the total size unchanged. This
change greatly improves the utilization of cached data, since
the full search is done row by row.

Under the All Intra configuration, the size of CTU is set to
128, the size of VPDU is 64*64. At this time, the size of
CurrBUF and CACHE part is 64*64, and the size of BUF part
is 128*64, meaning that it can store 256*64 samples. The
reference area with proposed new IBC buffer is 5 VPDUs,
showing in Fig. 4, and the reference area of the origin IBC
mode in VVC is 4 VPDUs, showing in Fig. 1. The proposed
method expands the size of the reference area by 25%.

2) Method without Cache: This method is to remove the
recompression process and only retain the quantization
process on the encoder side to improve the encoding speed.

Fig. 3. The workflow of proposed IBC buffer

BUFCurrBUF

CACHE

Encoded CU

Reference

blockdecompress
read

read

store compress

Fig. 5. Usage of 128*128 memory in different methods

64

CACHE

CurrBUF

BUFBUF64

CurrBUF

Original

buffer

Proposed method

with Cache

Proposed method

without Cache

CurrBUF

Fig. 4. Reference area of IBC with proposed method with cache

Reference area Unavailable

Curr

Curr Curr

Curr

772

The CACHE part is no longer needed. For the encoder, the
BUF occupies more memory to store the quantified reference
blocks without compression. which can be directly read by
the encoder. For the decoder, the workflow of IBC buffer in
decoder is similar to Fig. 3 but the CACHE part is discarded.
All memory space other than CurrBUF is used ad the BUF
part to stored the compressed reference blocks, showing in
Fig. 5. This can further expand the reference area to 7 VPDUs.
The quantization processes of encoder and decoder are the
same to ensure the codec conformance.

This method increases the memory size required on the
encoding side to 175% because there is no recompression
process and more reference blocks take up more memory. On
the decoding side, the use of memory as shown in Fig. 5,
remains unchanged, which is equal to the original IBC buffer
size in VVC. The method without Cache greatly improves the
coding speed and coding effect. It is a very efficient solution
in some cases where you have enough resources for the
encoder and want to control the cost of the decoder, e.g. cloud
gaming and cloud meeting.

The introduction of CurrBUF simplifies the compression
process of reference blocks. The arrangement of compression
blocks conflicts with the division of CU but the arrangement
of VPDUs does not. Therefore, compression after storing a
VPDU is easier to perform. Besides, samples stored in
CurrBUF can also be used as references for IBC, which may
also allow the encoder to find a better reference block,
comparing to the block that may be quantized in BUF.

The proposed buffer with RBRC has a fixed size and a
mapping rule to find the required reference block from BUF:

 RefX_Buf = RefX_Pic % BufWidth  

 RefY_Buf = RefY_Pic % BufHeight 

BufHeight equals the CTU size and BufWidth equals the
memory size of BUF part divided by Buf_Height. Codec uses
them to convert the reference block position in picture
coordinates (RefX_Pic, RefY_Pic) to the reference block
position in BUF coordinates (RefX_Buf, RefY_Buf) and get
the required block in BUF. When getting a reference block,
whether it is obtained from CurrBUF or BUF also needs to be
judged.

B. Lossy Reference Block Recompression

The Reference Block Recompression (RBRC) is a new
recompression method for IBC [6]. Quantization is introduced
to change the RBRC into a lossy recompression method. The
whole process is divided into three steps: spatial prediction,
variable length coding, quantification. The working flow is
shown in Fig. 6.

The size of a compression block is set to 16*16, a
compression block is compressed with a compression rate of
no more than 50% and is stored in a fixed location with half
of the original memory space, showing in Fig. 2. The
decompression process is the inverse process of compression.
Compressed blocks can achieve pixel-level random access by
decompressing all relative blocks in the corresponding
position. When the side length of the picture isn’t divisible by
the side length of compression block, the VPDU that crosses
the corresponding picture boundary will be removed from the
reference area of IBC.

1) Spatial Prediction: We use the prediction method in
[21], which has both low complexity and good effect. The
block to be compressed is divided into three parts: the top-left
sample, the first row and column, and the remaining samples,
showing in Fig. 7. The top-left sample is stored without
compressing as reference for others; every sample in the first
row use the sample on the left as a reference; every sample in
the first column use the sample on the top as a reference; the
remaining samples are predictions by the samples on the left,
top and top-left, respectively represented by a, b and c:

Fig. 6. The compression process of a compression block

16*16 block

Spatial prediction

Variable length coding

Code stream

Quantization

QP +1

No

Yes

Stream of a

16*16 block

≤ Threshold ?

TABLE I. SMALL-VALUE OPTIMIZED VLC TABLE

Table Code 00 01 10 110

Max Value 0 1 2 3~4

0 - 1 01 001
±1 0S 1S 01S

±2 00S 10S

±3 11S
±4 000S

Table Code 1110 11110 111110 111111

Max Value 5~8 9~16 17~32 >32

0 0001 00001 00001
±1 001S 0001S 0001S

±2 010S 0010S 0010S

… … … …

±7 111S 0111S 0111S

±8 0000S 1000S 1000S

… … …
±11 1011S 1011S xx…xS

±12 1100S 11000S

… … …
±15 1111S 11011S

±16 00000S 1110000S

… …
±31 1111111S

±32 0000000S
S indicates the sign of the residual.

Fig. 7. The Spatial Prediction method

(0, 0)

a

bc

x

… …

…
…

16

16

773

min(,), max(,)

max(,), min(,)

, otherwise

a b if c a b

x a b if c a b

a b c




 
  

 

Through the prediction process, the block is transformed
into a block of residual (except for the top-left sample, it
remains its original value).

2) Variable Length Coding: After spatial prediction, we
get the block of residual instead of the origin block, and we
use the way of variable length coding (VLC) to turn it into a
stream to further compress it. The adjusted Small-Value
Optimized Variable Length Coding (SVO-VLC) [17] is
showing in Table I. The maximum value of the block is count
to get a table code, and values of each position on the block
are converted into corresponding code according to the table
code. A block of residual can be further divided into four small
VLC coding blocks to get better coding efficiency, we judge
whether to further divide by whether there is a small block
with table code of 00 or 01.

3) Quantization: Quantization helps to make sure that the
compression rate does not exceed 50% to meet our memory
allocation for compressed blocks. The process of quantization
and compression is shown in Fig. 6. The quantization
parameter (QP) represents the number of bits, by which the
value of the sample will be shifted right during the spatial
prediction process, with the initial value of zero.

 Threshold = BlockSize × PixelBitDepth × 50% 

If the total number of bits in the stream exceeds the
threshold, it will go back to the spatial prediction state and
quantify the block by shifting right the original value of
samples. Every time it exceeds the threshold, it shifts one
more bit. There are three bits to present how many bits the
block has shifted, so the max bits that can be shifted is 7. If the
total number of bits still exceeds the threshold after shifting 7
bits, the output stream of this block will be set to zero to
prevent it from being referenced by IBC CU.

III. EXPERIMENTAL RESULT

The experiment is carried on all the 8 YUV420 test
sequences specified in VVC common test conditions for SCC
[22, 23] under the configuration of All Intra, and in the mode
that IBC, HashME, BDPCM is turned on. Our algorithm is
embedded in VTM 10.0 [24], the reference software of VVC.
The experimental result is compared with the VTM 10.0 with
its original IBC algorithm under the same configuration.

The experimental result in TABLE Ⅱ shows that our
proposed method with cache can achieve 1.8% BD-rate
reduction on average for the TGM sequences. In the sequences
of ArenaOfValor and BasketballDrillText, the BD-rate
increases 0.08% in the worst case. The reason is that IBC
doesn’t work well on these contents [1, 25], these two
sequences are game screens and nature contents respectively,
there are less repeat patterns, causing no effect to expand the
reference area of IBC. In terms of time, the coding time is
fluctuating, with encoding time from 185% to 431% and
decoding time from 130% to 296%, greatly affected by the
cache efficiency. The increase of encoding time is because the
complexity of getting reference blocks for IBC increases, and
a larger reference area extends the motion estimation process
of IBC. For the decoding time, it’s fluctuation is mainly
because of the cache uncertainty, directly decompressing
without cache should be a better way to read reference blocks
for the decoder.

For the proposed method without cache, it achieves 4.0%
BD-rate reduction on average for the TGM sequences. This
result comes from the improvement on IBC with a larger
reference area (175%). It proves that compressed reference
area is still effective for the IBC mode. In the sequences of
ArenaOfValor and BasketballDrillText, the BD-rate increases
0.09% in the worst case. The reason is the same as mentioned
above. The encoding time is about 100% and decoding time is
about 130%, which is worthwhile comparing to the gain
obtained.

IV. CONCLUSION

In this paper, a method of constructing an IBC buffer with
the Reference Block Recompression (RBRC) technology to
improve the effect of IBC is proposed. The new IBC buffer

TABLE II. EXPERIMENTAL RESULT PROPOSED METHOD VS VTM10.0

 Sequence

Proposed Method with Cache Proposed Method without Cache

BD-rate (%) Enc.

Time

Dec.

Time

BD-rate (%) Enc.

Time

Dec.

Time Y U V Y U V

Class

F

ArenaOfValor 0.03 0.08 0.02 386% 130% -0.01 0.09 -0.04 110% 127%

BasketballDrill

Text
0.00 0.07 -0.09 431% 161% -0.06 -0.09 -0.15 106% 142%

SlideEditing -3.64 -3.70 -3.84 397% 296% -5.96 -5.92 -6.11 102% 140%

SlideShow -2.02 -2.05 -1.63 374% 162% -4.52 -4.48 -4.50 106% 132%

Average -1.41 -1.40 -1.39 397% 187% -2.64 -2.60 -2.70 106% 135%

Class
TGM

ChineseEditing -0.51 -0.50 -0.52 379% 370% -2.15 -2.13 -2.10 102% 148%

Console -1.42 -1.48 -1.45 185% 261% -2.76 -2.78 -2.79 93% 128%

Desktop -3.76 -3.93 -3.95 206% 285% -8.00 -8.03 -8.06 92% 130%

FlyingGraphics -1.21 -1.49 -1.43 252% 286% -2.94 -3.23 -3.18 104% 129%

Average -1.72 -1.85 -1.84 256% 301% -3.96 -4.04 -4.03 98% 134%

774

contains three parts, CurrBUF, BUF, and CACHE, to help to
compress and decompress the reference block used by IBC,
and two methods are proposed to realize the IBC buffer,
namely method with cache and method without cache. The
method of constructing IBC buffer is based on the lossy
RBRC, the reference block is compressed with a compression
rate of no more than 50% by spatial prediction, variable length
coding, and quantization, and stored in the proposed buffer in
the form of a bitstream. Under the test environment of All
Intra, the method with cache expands the reference range of
IBC mode by 25% while keeping the IBC buffer size
unchanged on both encoding and decoding side. The method
without cache expands the reference range of IBC mode by
75% while keeping the IBC buffer size unchanged on
decoding side. The experimental result shows that BD-rate
reduction of 1.8% and 4.0% on average can be achieved
respectively for TGM test sequences.

REFERENCES

[1] X. Xu and S. Liu, "Screen Content Coding in Recently Developed
Video Coding Standards," in 2020 IEEE International Conference on
Visual Communications and Image Processing (VCIP), 2020, pp. 1-2.

[2] J. Xu, R. Joshi, and R. A. Cohen, "Overview of the emerging HEVC
screen content coding extension," IEEE Transactions on Circuits and
Systems for Video Technology, vol. 26, no. 1, pp. 50-62, 2016.

[3] J. Chen, Y. Ye, and S. H. Kim, "Algorithm description for Versatile
Video Coding and Test Model 10 (VTM 10)," in document JVET-
S2002, Proc. of 19th JVET Meeting, teleconference, June 2020.

[4] X. Xu, X. Li, and S. Liu, "Intra block copy in Versatile Video Coding
with Reference Sample Memory Reuse," in 2019 Picture Coding
Symposium (PCS), 2019, pp. 1-5.

[5] G. Bjontegaard, "Calculation of average PSNR differences between
RD-curves," in document VCEG-M33, Proc. of 13th VCEG Meeting,
Austin, Texas, USA, Apr. 2001.

[6] J. Hu, J. Wang, G. Zhong, J. Cao, R. Mao, and F. Liang, "A Lossless
Intra Reference Block Recompression Scheme for Bandwidth
Reduction in HEVC-IBC," in 2021 IEEE International Symposium on
Circuits and Systems (ISCAS), 2021: in press.

[7] T. Song and T. Shimamoto, "Reference frame data compression
method for H. 264/AVC," IEICE Electronics Express, vol. 4, no. 3, pp.
121-126, 2007.

[8] T. L. B. Yng, B. Lee, and H. Yoo, "A low complexity and lossless
frame memory compression for display devices," IEEE Transactions
on Consumer Electronics, vol. 54, no. 3, pp. 1453-1458, 2008.

[9] J. Kim and C. Kyung, "A lossless embedded compression using
significant bit truncation for HD video coding," IEEE Transactions on
Circuits and Systems for Video Technology, vol. 20, no. 6, pp. 848-
860, 2010.

[10] D. Zhou et al., "A 530 mpixels/s 4096x2160@60fps H.264/AVC high
profile video decoder chip," IEEE Journal of Solid-State Circuits, vol.
46, no. 4, pp. 777-788, 2011.

[11] X. Bao, D. Zhou, P. Liu, and S. Goto, "An advanced hierarchical
motion estimation scheme with lossless frame recompression and
early-level termination for beyond high-definition video coding," IEEE
Transactions on Multimedia, vol. 14, no. 2, pp. 237-249, 2012.

[12] X. Lian, Z. Liu, W. Zhou, and Z. Duan, "Lossless frame memory
compression using pixel-grain prediction and dynamic order entropy
coding," IEEE Transactions on Circuits and Systems for Video
Technology, vol. 26, no. 1, pp. 223-235, 2016.

[13] S. Yoon, S. Jun, Y. Cho, K. Lee, H. Jang, and T. H. Han, "Optimized
lossless embedded compression for mobile multimedia applications,"
Electronics, vol. 9, no. 5, 2020.

[14] D. Pau and R. Sannino, "MPEG-2 decoding with a reduced RAM
requisite by ADPCM recompression before storing MPEG-2
decompressed data," United States, 1998.

[15] C. Cheng, P. Tseng, and L. Chen, "Multimode embedded compression
codec engine for power-aware video coding system," IEEE
Transactions on Circuits and Systems for Video Technology, vol. 19,
no. 2, pp. 141-150, 2009.

[16] T. Tsai and Y. Lee, "A 6.4 Gbit/s Embedded Compression Codec for
Memory-Efficient Applications on Advanced-HD Specification,"
IEEE Transactions on Circuits and Systems for Video Technology, vol.
20, no. 10, pp. 1277-1291, 2010.

[17] Y. Fan, Q. Shang, and X. Zeng, "In-block prediction-based mixed lossy
and lossless reference frame recompression for next-generation video
encoding," IEEE Transactions on Circuits and Systems for Video
Technology, vol. 25, no. 1, pp. 112-124, 2015.

[18] L. Guo, D. Zhou, J. Zhou, S. Kimura, and S. Goto, "Lossy Compression
for Embedded Computer Vision Systems," IEEE Access, vol. 6, pp.
39385-39397, 2018.

[19] X. Lian, Z. Liu, W. Zhou, and Z. Duan, "Parallel Content-Aware
Adaptive Quantization-Oriented Lossy Frame Memory Recompression
for HEVC," IEEE Transactions on Circuits and Systems for Video
Technology, vol. 28, no. 4, pp. 958-971, 2018.

[20] A. Willème, B. Macq, A. Descampe, and G. Rouvroy, "Power-Aware
HEVC Compression Through Asymmetric JPEG XS Frame Buffer
Compression," in 2018 25th IEEE International Conference on Image
Processing (ICIP), 2018, pp. 3598-3602.

[21] M. J. Weinberger, G. Seroussi, and G. Sapiro, "The LOCO-I lossless
image compression algorithm: principles and standardization into
JPEG-LS," IEEE Transactions on Image Processing, vol. 9, no. 8, pp.
1309-1324, 2000.

[22] X. Xu, Y.-C. Sun, Y.-H. Chao, and J. Xu, "Description of Core
Experiment 8: Screen Content Coding Tools," in document JVET-
L1028, Proc. of 12th JVET Meeting, Macao, CN, Oct. 2018.

[23] F. Bossen, J. Boyce, K. Suehring, X. Li, and V. Seregin, "JVET
common test conditions and software reference configurations for SDR
video," in document JVET-N1010, Proc. of 14th JVET Meeting,
Geneva, CH, Mar. 2019.

[24] The VTM reference software for VVC development, version 10.0.
Available: https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/-
/tree/VTM-10.0

[25] Y. Hu, Y. Li, Z. Chen, X. Xu and S. Liu, "Performance Analysis of Intra
Block Copy for Screen Content Coding in AVS3," 2020 IEEE
Conference on Multimedia Information Processing and Retrieval
(MIPR), Shenzhen, China, 2020, pp. 123-126.

775

