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Abstract—Intra Block Copy is a tool adopted in HEVC and 

VVC extensions on SCC, it significantly improves the coding 

efficiency of screen content materials. To reduce memory 

consumption and decoder complexity, the reference region of 

IBC in VVC is limited. In this paper, we propose a method that 

recompresses the reference block of IBC, so that more reference 

blocks can be stored while using the same memory space. This 

allows IBC to expand its search range and results in BD-rate 

reduction. The proposed method includes spatial prediction, 

variable length coding, quantization, and two methods to realize 

the IBC buffer with recompressed reference block. We test these 

two methods in the reference software of VVC and achieve BD-

rate reduction of 1.8% and 4.0% on average respectively for 

TGM test sequences.  

Keywords—Reference Block Recompression, IBC, VVC, 

HEVC, Lossy compression 

I. INTRODUCTION 

The demand for screen content video coding (SCC), such 
as online meetings, online education, and cloud gaming, is 
increasing during these years. To address the demand, many 
tools like Intra Block Copy (IBC), Palette Mode (PLT), 
Transform Skip Mode (TSM) have been adopted into SCC. 
Intra block copy is the one with the highest efficiency among 
these tools [1]. 

IBC is a tool firstly adopted in HEVC extensions on SCC 
[2] and now widely applied to most recently developed video 
coding standards [1] such as VVC. In IBC, block matching is 
performed at the encoder to find the optimal block vector (or 
motion vector) for each coding unit (CU). A block vector is 
used to indicate the displacement from the current block to a 
reference block, which is already reconstructed inside the 
current picture [3].  

To reduce memory consumption and decoder complexity, 
the IBC in VVC allows only the reconstructed portion of the 
predefined area including the region of current CTU and some 
region of the left CTU [4], as reference area. This limitation 
allows the codec to use the on-chip storage as the IBC buffer. 
Fig. 1. illustrates the reference region of IBC Mode when the 
CTU size is 128, each block represents 64*64 luma sample 
units (the sizes mentioned later in the article all take luma 
sample as the unit). A 64*64 unit like this is called Virtual 
Pipeline Data Unit (VPDU) [3], which is defined as non-
overlapping units in a picture.  

However, the memory size restriction reduces the coding 
efficiency of IBC by about 10% [4] in BD-rate [5] reduction. 
To reduce the loss caused by the limited memory size, one 
idea is to expand the reference area without changing the size.  

Inspired by Reference Frame Recompression (RFRC), 
which is typically used in the motion estimation and motion 
compensation process of inter prediction to reduce the 
bandwidth and power consumption in power-aware devices, 
we attempt to reduce the impact of memory size restriction 
with recompression technology. The existing recompression 
methods can be divided into two categories: lossless [7-13] 
and lossy [14-20] recompression. To the best of our 
knowledge, in our previous work [6], we are the first to 
introduce recompression methods named Reference Block 
Recompression (RBRC) to the IBC intra prediction. [6] 
proposed a lossless recompression method, which compresses 
the unfiltered reconstructed samples before storing them into 
memory and decompresses the compressed data after fetched 
back. This method can reduce the bandwidth on Memory Bus. 

The RBRC method shows the potential in processing 
reference blocks of IBC, but the downside of the lossless 
RBRC is that the compression rate of lossless RBRC can’t be 
guaranteed. Therefore, the compressed data needs to be stored 
in fixed addresses, occupying the same memory space as 
original data, which means that it can’t save the memory size. 
The lossy RBRC we proposed in this article solves the 
problem, quantization and compression rate judgment are 
introduced into the RBRC to ensure that the compression rate 
doesn’t exceed 50%. This allows the compressed data to be 
stored in half of the original memory space, showing in Fig. 2. 
Memory saving means that a buffer built with lossy RBRC 
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Fig. 1. Current CTU processing order and its available reference 
samples in current and left CTU 
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Fig. 2.  The original block and the compressed block in memory 
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can store more reference blocks for the IBC under the 
condition of the memory size restriction, and then improves 
the effect of IBC and get the gain in BD-rate. 

 The rest of this paper is organized as follows. In Section 
Ⅱ, the new IBC buffer with lossy RBRC is introduced. Its 
structure and workflow are explained. What’s more, the way 
to achieve lossy RBRC is introduced, including spatial 
prediction, variable length coding, and quantization. In 
Section Ⅲ, the experiment result of encoder and decoder with 
proposed method comparing to VTM 10.0 is given and 
explained. The conclusion is present in Section Ⅳ. 

II. PROPOSED METHOD 

Refer to the processing of the IBC mode in VVC, a buffer 
with the size of 128*128 is needed in the codec to store the 
reference blocks required by the IBC mode. This allows the 
hardware to use on-chip storage as a buffer, speeding up the 
IBC mode, and keep complexity low. Based on this idea, we 
propose to introduce Reference Block Recompression (RBRC) 
technology into IBC without changing the memory size set for 
IBC buffer in VVC, and replace the reference block in IBC 
buffer with the compressed reference block, showing in Fig. 
2, to expand the IBC mode reference area to improve the effect 
of IBC mode.  

A. New IBC Buffer Structure 

The new IBC buffer we proposed deals with compressed 
data instead of the original block of samples. It is divided into 
three parts to store different data to help the codec to 
compress/decompress and read/write the reference block: 

 The BUF part is used to store the blocks compressed 
by the RBRC method. The size is the total IBC buffer 
size (128*128) minus the size occupied by CurrBUF 
and CACHE. Its maintenance process is similar to the 
IBC buffer in VVC [3].  

 The CurrBUF part is to store the sample of the 
reconstructed CU in the current VPDU during the 
encoding and decoding process. These samples are 
compressed and stored in the corresponding position in 
BUF after the codec enters the next VPDU.  

 The CACHE part is the cache between the new IBC 
buffer and the prediction buffer of IBC CU. It stores 
the data read from CurrBUF and BUF in the past. The 
introduction of this part is mainly to improve the 
encoding speed. 

These are the components of our proposed new IBC buffer 
with RBRC.  

For the encoder, the IBC buffer needs to be accessed 
frequently to obtain reference blocks during the motion 
estimation process. To reduce the encoding time, two methods 
are proposed to solve this problem based on the above 

components, we call them method with cache and method 
without cache. 

1) Method with Cache: The workflow is showing in Fig. 
3. In terms of getting a reference block, the IBC CU gives the 
required referenced block’s position and reads the data from 
the CACHE. If the CACHE doesn’t contain the data of 
required block, it will decompress the required reference block 
from BUF or copy from CurrBUF. Then the IBC CU gets the 
block it needs. The CACHE reads in data that fills its own size 
at one time, and the required reference block is located at the 
upper-left of the read-in area.  

In terms of storing reference blocks, the samples of 
reconstructed CU in the current VPDU will first be stored in 
the CurrBUF. When the codec is entering the next VPDU, all 
the samples in CurrBUF will be compressed in the unit of 
16*16 compression block and stored in the BUF according to 
coordinate conversion rules. In the case that CU is larger than 
VPDU, the process of compressing VPDU will be repeated to 
save the reconstructed CU.  

In most cases, CACHE has a square buffer area, with a 
side length of VPDU size, and can works for CU of any size 
in IBC mode. During the full search, which is used by CU not 
larger than 16*16, the buffer area changes into a rectangle 
with the high equal to 16 and the total size unchanged. This 
change greatly improves the utilization of cached data, since 
the full search is done row by row. 

Under the All Intra configuration, the size of CTU is set to 
128, the size of VPDU is 64*64. At this time, the size of 
CurrBUF and CACHE part is 64*64, and the size of BUF part 
is 128*64, meaning that it can store 256*64 samples. The 
reference area with proposed new IBC buffer is 5 VPDUs, 
showing in Fig. 4, and the reference area of the origin IBC 
mode in VVC is 4 VPDUs, showing in Fig. 1. The proposed 
method expands the size of the reference area by 25%.  

2) Method without Cache: This method is to remove the 
recompression process and only retain the quantization 
process on the encoder side to improve the encoding speed. 

 

Fig. 3.  The workflow of proposed IBC buffer 
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Fig. 5.  Usage of 128*128 memory in different methods 
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Fig. 4.  Reference area of IBC with proposed method with cache 
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The CACHE part is no longer needed. For the encoder, the 
BUF occupies more memory to store the quantified reference 
blocks without compression. which can be directly read by 
the encoder. For the decoder, the workflow of IBC buffer in 
decoder is similar to Fig. 3 but the CACHE part is discarded. 
All memory space other than CurrBUF is used ad the BUF 
part to stored the compressed reference blocks, showing in 
Fig. 5. This can further expand the reference area to 7 VPDUs. 
The quantization processes of encoder and decoder are the 
same to ensure the codec conformance. 

This method increases the memory size required on the 
encoding side to 175% because there is no recompression 
process and more reference blocks take up more memory. On 
the decoding side, the use of memory as shown in Fig. 5, 
remains unchanged, which is equal to the original IBC buffer 
size in VVC. The method without Cache greatly improves the 
coding speed and coding effect. It is a very efficient solution 
in some cases where you have enough resources for the 
encoder and want to control the cost of the decoder, e.g. cloud 
gaming and cloud meeting. 

The introduction of CurrBUF simplifies the compression 
process of reference blocks. The arrangement of compression 
blocks conflicts with the division of CU but the arrangement 
of VPDUs does not. Therefore, compression after storing a 
VPDU is easier to perform. Besides, samples stored in 
CurrBUF can also be used as references for IBC, which may 
also allow the encoder to find a better reference block, 
comparing to the block that may be quantized in BUF. 

The proposed buffer with RBRC has a fixed size and a 
mapping rule to find the required reference block from BUF:  

                   RefX_Buf = RefX_Pic % BufWidth  

                   RefY_Buf = RefY_Pic % BufHeight 

BufHeight equals the CTU size and BufWidth equals the 
memory size of BUF part divided by Buf_Height. Codec uses 
them to convert the reference block position in picture 
coordinates (RefX_Pic, RefY_Pic) to the reference block 
position in BUF coordinates (RefX_Buf, RefY_Buf) and get 
the required block in BUF. When getting a reference block, 
whether it is obtained from CurrBUF or BUF also needs to be 
judged.  

B. Lossy Reference Block Recompression 

The Reference Block Recompression (RBRC) is a new 
recompression method for IBC [6]. Quantization is introduced 
to change the RBRC into a lossy recompression method. The 
whole process is divided into three steps: spatial prediction, 
variable length coding, quantification. The working flow is 
shown in Fig. 6.  

The size of a compression block is set to 16*16, a 
compression block is compressed with a compression rate of 
no more than 50% and is stored in a fixed location with half 
of the original memory space, showing in Fig. 2. The 
decompression process is the inverse process of compression. 
Compressed blocks can achieve pixel-level random access by 
decompressing all relative blocks in the corresponding 
position. When the side length of the picture isn’t divisible by 
the side length of compression block, the VPDU that crosses 
the corresponding picture boundary will be removed from the 
reference area of IBC.  

1) Spatial Prediction: We use the prediction method in 
[21], which has both low complexity and good effect. The 
block to be compressed is divided into three parts: the top-left 
sample, the first row and column, and the remaining samples, 
showing in Fig. 7. The top-left sample is stored without 
compressing as reference for others; every sample in the first 
row use the sample on the left as a reference; every sample in 
the first column use the sample on the top as a reference; the 
remaining samples are predictions by the samples on the left, 
top and top-left, respectively represented by a, b and c: 

 

Fig. 6.  The compression process of a compression block 
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TABLE I.  SMALL-VALUE OPTIMIZED VLC TABLE  

Table Code 00 01 10 110 

Max Value 0 1 2 3~4 

0 - 1 01 001 
±1  0S 1S 01S 

±2   00S 10S 

±3    11S 
±4    000S 

Table Code 1110 11110 111110 111111 

Max Value 5~8 9~16 17~32 >32 

0 0001 00001 00001  
±1 001S 0001S 0001S  

±2 010S 0010S 0010S  

… … … …  

±7 111S 0111S 0111S  

±8 0000S 1000S 1000S  

…  … …  
±11  1011S 1011S xx…xS 

±12  1100S 11000S  

…  … …  
±15  1111S 11011S  

±16  00000S 1110000S  

…   …  
±31   1111111S  

±32   0000000S  
S indicates the sign of the residual. 

 

 

Fig. 7.  The Spatial Prediction method 
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Through the prediction process, the block is transformed 
into a block of residual (except for the top-left sample, it 
remains its original value).  

2) Variable Length Coding: After spatial prediction, we 
get the block of residual instead of the origin block, and we 
use the way of variable length coding (VLC) to turn it into a 
stream to further compress it. The adjusted Small-Value 
Optimized Variable Length Coding (SVO-VLC) [17] is 
showing in Table I. The maximum value of the block is count 
to get a table code, and values of each position on the block 
are converted into corresponding code according to the table 
code. A block of residual can be further divided into four small 
VLC coding blocks to get better coding efficiency, we judge 
whether to further divide by whether there is a small block 
with table code of 00 or 01. 

3) Quantization: Quantization helps to make sure that the 
compression rate does not exceed 50% to meet our memory 
allocation for compressed blocks. The process of quantization 
and compression is shown in Fig. 6. The quantization 
parameter (QP) represents the number of bits, by which the 
value of the sample will be shifted right during the spatial 
prediction process, with the initial value of zero. 

 Threshold = BlockSize × PixelBitDepth × 50% 

If the total number of bits in the stream exceeds the 
threshold, it will go back to the spatial prediction state and 
quantify the block by shifting right the original value of 
samples. Every time it exceeds the threshold, it shifts one 
more bit. There are three bits to present how many bits the 
block has shifted, so the max bits that can be shifted is 7. If the 
total number of bits still exceeds the threshold after shifting 7 
bits, the output stream of this block will be set to zero to 
prevent it from being referenced by IBC CU.  

III. EXPERIMENTAL RESULT 

The experiment is carried on all the 8 YUV420 test 
sequences specified in VVC common test conditions for SCC 
[22, 23] under the configuration of All Intra, and in the mode 
that IBC, HashME, BDPCM is turned on. Our algorithm is 
embedded in VTM 10.0 [24], the reference software of VVC. 
The experimental result is compared with the VTM 10.0 with 
its original IBC algorithm under the same configuration.  

The experimental result in TABLE Ⅱ shows that our 
proposed method with cache can achieve 1.8% BD-rate 
reduction on average for the TGM sequences. In the sequences 
of ArenaOfValor and BasketballDrillText, the BD-rate 
increases 0.08% in the worst case. The reason is that IBC 
doesn’t work well on these contents [1, 25], these two 
sequences are game screens and nature contents respectively, 
there are less repeat patterns, causing no effect to expand the 
reference area of IBC. In terms of time, the coding time is 
fluctuating, with encoding time from 185% to 431% and 
decoding time from 130% to 296%, greatly affected by the 
cache efficiency. The increase of encoding time is because the 
complexity of getting reference blocks for IBC increases, and 
a larger reference area extends the motion estimation process 
of IBC. For the decoding time, it’s fluctuation is mainly 
because of the cache uncertainty, directly decompressing 
without cache should be a better way to read reference blocks 
for the decoder. 

For the proposed method without cache, it achieves 4.0% 
BD-rate reduction on average for the TGM sequences. This 
result comes from the improvement on IBC with a larger 
reference area (175%). It proves that compressed reference 
area is still effective for the IBC mode. In the sequences of 
ArenaOfValor and BasketballDrillText, the BD-rate increases 
0.09% in the worst case. The reason is the same as mentioned 
above. The encoding time is about 100% and decoding time is 
about 130%, which is worthwhile comparing to the gain 
obtained.  

IV. CONCLUSION 

In this paper, a method of constructing an IBC buffer with 
the Reference Block Recompression (RBRC) technology to 
improve the effect of IBC is proposed. The new IBC buffer 

TABLE II.  EXPERIMENTAL RESULT PROPOSED METHOD VS VTM10.0 

 Sequence 

Proposed Method with Cache Proposed Method without Cache 

BD-rate (%) Enc. 

Time 

Dec. 

Time 

BD-rate (%) Enc. 

Time 

Dec. 

Time Y U V Y U V 

Class 

F 

ArenaOfValor 0.03 0.08 0.02 386%  130%  -0.01 0.09 -0.04 110% 127% 

BasketballDrill

Text 
0.00 0.07 -0.09 431% 161% -0.06 -0.09 -0.15 106% 142% 

SlideEditing -3.64 -3.70 -3.84 397% 296% -5.96 -5.92 -6.11 102% 140% 

SlideShow -2.02 -2.05 -1.63 374% 162% -4.52 -4.48 -4.50 106% 132% 

Average -1.41 -1.40 -1.39 397% 187% -2.64 -2.60 -2.70 106% 135% 

Class 
TGM 

ChineseEditing -0.51 -0.50 -0.52 379% 370% -2.15 -2.13 -2.10 102% 148% 

Console -1.42 -1.48 -1.45 185% 261% -2.76 -2.78 -2.79 93% 128% 

Desktop -3.76 -3.93 -3.95 206% 285% -8.00 -8.03 -8.06 92% 130% 

FlyingGraphics -1.21 -1.49 -1.43 252% 286% -2.94 -3.23 -3.18 104% 129% 

Average -1.72 -1.85 -1.84 256% 301% -3.96 -4.04 -4.03 98% 134% 
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contains three parts, CurrBUF, BUF, and CACHE, to help to 
compress and decompress the reference block used by IBC, 
and two methods are proposed to realize the IBC buffer, 
namely method with cache and method without cache. The 
method of constructing IBC buffer is based on the lossy 
RBRC, the reference block is compressed with a compression 
rate of no more than 50% by spatial prediction, variable length 
coding, and quantization, and stored in the proposed buffer in 
the form of a bitstream. Under the test environment of All 
Intra, the method with cache expands the reference range of 
IBC mode by 25% while keeping the IBC buffer size 
unchanged on both encoding and decoding side. The method 
without cache expands the reference range of IBC mode by 
75% while keeping the IBC buffer size unchanged on 
decoding side. The experimental result shows that BD-rate 
reduction of 1.8% and 4.0% on average can be achieved 
respectively for TGM test sequences. 
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