
Combining Forensics and Privacy
Requirements for Digital Images

Pauline Puteaux
Univ. Montpellier

CNRS, UMR 5506 LIRMM
Montpellier, France

pauline.puteaux@lirmm.fr

Vincent Itier
IMT Lille-Douai, Institut Mines-Télécom,
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Abstract—This paper proposes to study the impact of image
selective encryption on both forensics and privacy preserving
mechanisms. The proposed selective encryption scheme works in-
dependently on each bitplane by encrypting the s most significant
bits of each pixel. We show that this mechanism can be used to
increase privacy by mitigating image recognition tasks. In order
to guarantee a trade-off between forensics analysis and privacy,
the signal of interest used for forensics purposes is extracted from
the 8−s least significant bits of the protected image. We show on
the CASIA2 database that good tampering detection capabilities
can be achieved for s ∈ {3, . . . , 5} with an accuracy above 80%
using SRMQ1 features, while preventing class recognition tasks
using CNN with an accuracy smaller than 50%.

Index Terms—Forensics, Privacy, Visual confidentiality, Selec-
tive encryption, Trade-off.

I. INTRODUCTION

Image exchanges represent a large amount of Internet us-
age nowadays. This trend goes hand in hand with privacy
requirements since the transmission can be spied on public
channels. Therefore, it has been proposed to encrypt these
images in order to hide their content, making them visually
confidential to unauthorized users. Some encryption methods
have been specifically designed for images in order to preserve
their format and their size and allowing their visualization
after encryption. Allowing visualization is interesting to let
users being able to see that an image is present, but its
access is restricted. Moreover, selective encryption, which
only encrypts a fraction of image information, allows us to
visualize a level of details of the image as a function of the
encrypted information [1]. In addition, visualization may be
authorized only on a certain part of the image. Encryption
can be then done partially, for example only on human faces,
for privacy concerns. In this context, partial encryption can
be selective [2]. Nevertheless, for end users such as cloud
platforms or image based social networks, encrypted images
are not convenient to work with. Indeed, using a classical
encryption scheme, the targeted platform is not able to decide
whether an image respects the terms of usage or not. In
particular, it cannot check its integrity as this is done in the
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Fig. 1. Trade-off between privacy preservation and integrity check in the
context of selectively encrypted image exchanges throughout a public server.

clear domain [3]. In order to preserve privacy while enabling
analysis in the encrypted domain, homomorphic encryption
has been proposed. This approach can be used for SIFT
detection for example [4]. However, homomorphic encryption
schemes are computationally intensive, which avoids complex
operations from being carried out, and requires more storage.
On the contrary selective encryption is fast and does not
expand the original image size. With such an approach, a part
of the image content is encrypted, while the other one remains
in clear, i.e. non-encrypted, and can be then analyzed. This
could introduce a security breach and image content privacy
is thus questionable.

In this paper, we study how it is possible to use the
framework of selective encryption in order to reach a trade-
off between privacy preservation and integrity check. An
illustration of an application scenario on a public server is
depicted in Fig. 1. From original images, several bit-planes
are encrypted, from most significant to least significant bits. A
forensics analysis based on the extraction of SRMQ1 features
is then conducted to detect if a selectively encrypted image
has been tampered or not. In addition, a privacy evaluation
is carried out in order to assess the visual confidentiality
of a selectively encrypted image. This is done in terms of
recognizability by predicting the image class.

The rest of this paper is organized as follows. Section II
describes our proposed approach to analyze the influence
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of selective encryption on both image forensics and privacy
preserving mechanisms. Experimental results are presented in
Section III. Finally, the conclusion is drawn in Section IV.

II. PROPOSED APPROACH

In this section, we describe our proposed approach to
analyze the trade-off between privacy and tampering detection
in the context of selective encryption. Selective encryption
consists to encrypt the most significant bit-planes (MSB)
of an image, while keeping the least significant bit-planes
(LSB) in clear. In order to perform forensics on selectively
encrypted images, we focus on the residual information of the
image. Moreover, for privacy evaluation, we are interested in
assessing the recognizability of a selectively encrypted image
by automatically predicting the class of the content. Note
that our approach is detailed for an application to gray level
images, but can be easily extended to RGB color images.

A. Selective encryption

Let us consider a gray level input image of m × n pixels.
Each pixel p(i, j) from this image, 0 ≤ i < m and 0 ≤ j < n,
is made of 8 bits and defined as:

p(i, j) =

7∑
k=0

pk(i, j)× 27−k, (1)

where pk(i, j) is the bit of index k.
One can note that the smaller the index k, the more sig-

nificant the associated bit. For privacy requirements, the input
image is encrypted in order to ensure the visual security of its
content. Moreover, depending on the application, it should be
interesting to be able to preserve a part of the image in clear.
In this context, encryption is selectively performed. Only a
fixed number s of bit-planes are encrypted and the remaining
8−s ones are kept in clear. Encryption is then performed from
the most (k = 0) to the least (k = s− 1) significant bit-plane
to encrypt (from MSB to LSB). An encryption key is used as
a seed for a cryptographically secure pseudo-random number
generator to obtain a pseudo-random sequence of s×m×n bits
bk(i, j), with 0 ≤ k < s. For each bit-plane to encrypt, each
bit pk(i, j) is XOR-ed with the associated bit in the pseudo-
random sequence to generate an encrypted bit pkE(i, j):

pkE(i, j) = pk(i, j)⊕ bk(i, j). (2)

B. Tampering detection using residuals

Tampering detection aims to decide whether or not an
image has been altered by local modification. Most common
forgeries are cloning (copy/move from a single image) and
splicing (copy/paste between several images). If typical image
forensics techniques use as inputs the whole image to be
analyzed, this strategy is not the best for encrypted images
since the encryption adds a noise of strong magnitude. This
noise could also alter the extraction of significant features for
a classification as authentic or tampered.

In order to perform a forensics analysis from selectively
encrypted images, all the encrypted bit-planes, of index

0 ≤ k < s, should be discarded in a pre-processing step.
According to the Kerckhoffs’ principle, we can assume that
the number s of encrypted bit-planes is known. Therefore, for
each pixel pE(i, j), the encrypted bits are set to zero using
bitwise shift operations to obtain a value p0(i, j):

p0(i, j) = (pE(i, j)� s)� s. (3)

In doing so, only the non-encrypted least significant bit-
planes are considered. One can note that these bit-planes
should be the most relevant for the classification task because
they are directly linked to the image residuals. Steganalysis
domain falls within the search of weak signals in image
residuals. Due to the intrinsic properties of traces left by image
forgery, steganalysis approaches can be applied to image
forensics [5], [6].

In this context, one of the most popular feature extractor
is the Spatial Rich Model (SRM) [7]. Because it uses the
statistics of neighboring noise residuals, it is widely employed
for steganalysis, but can be also used for tampering detection.
Indeed, noise residuals correspond to high frequency compo-
nents of an image. They capture the dependency changes due
to the tampering operation, in both horizontal and vertical di-
rections. The SRM begins by the computation of the residuals.
During this step, the input image is filtered by several high-
pass filters to generate residual images with different shapes
and orientations. After that, a quantization and a truncation
steps are performed. Finally, an output feature vector with
37,561 residuals is obtained, whatever the size of the input
image. The main drawback of SRM is that it leads to a high
computational complexity. Therefore, in order to deal with
this issue, a simplified version called SRMQ1 can be used
instead. With this feature extractor, the output feature vector
only contains 12,753 residuals.

For classification, an implementation of ridge regression
using Least Square Minimum-Residual (LSMR) optimization
method is used, due to its low computational complexity and
low memory requirements [8], [9]. Two classes are considered
for classification: authentic, i.e. with no falsification, and
tampered, when there are forgeries due to cloning or splicing
operations.

C. Privacy evaluation of selectively encrypted images

The selective encryption allows us to hide some levels on
details of the image. The proposed tampering detection relies
on the LSB that are not encrypted. Using a non full encryption
method could lead to privacy leak using the clear content of
the image. Therefore, we aim to know what is the trade-off
between the visual confidentiality, which assesses the privacy,
and the tampering detection.

The assessment of the visual confidentiality of an image is
a difficult task. Indeed, it is known that usual quality metrics,
such as PSNR or SSIM, are not relevant for assessing a
perceptual low quality. A low score does not point out if
the image has just a low quality or if the content can not
be recognized i.e. if the encryption preserves the privacy.
Some perceptual metrics based on subjective evaluations were
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Fig. 2. Illustration using the luminance component of the original image Au ani 00001 from the CASIA2 database [10]: first row) Selectively encrypted
images depending on the number s of encrypted bit-planes, from MSB to LSB and with 1 ≤ s ≤ 7; second row) Images obtained by setting to zero the
s encrypted bit-planes of associated selectively encrypted images (images were standardized for the recognizability task; this also allows a better visualization
of the significant information for classification).

proposed. In the context of privacy evaluation, the main draw-
back of these metrics is that they focus on perceptual quality.
Recently, Hofbauer et al. [11] have proposed an encrypted
image database with subjective recognition ground truth and
analyzed the correlation of subjective scores with some state
of the art metrics. They conclude that the evaluation of image
quality and the evaluation of the content recognizability are
two really different tasks and, therefore, the visual quality
metrics should not be used to assess content recognizability.

We propose to evaluate the privacy of a selectively en-
crypted image by trying to automatically predict its class. Our
assumption is that if an algorithm can automatically predict
the content of an image, then the encrypted image is leaking
some visual information.

Image content classification methods have achieved high
performance thanks to convolutional neural networks (CNN).
Therefore, we propose to assess the recognizability of selec-
tively encrypted image by training a model which predicts the
class of the image.

As for forensics analysis, the s encrypted bitplanes should
be set to zero using Eq. (3). This boils down to work directly
on high frequencies and short intensity range. In order to
exploit the low dynamic, images are standardized before to
be passed as input to the model.

Finally, to assess the classification score we use the accu-
racy score which measures how much data have been well
predicted. As visual confidentiality is inherently linked to
recognizability, we propose to define a privacy index such as
1− accuracy recognizability. Indeed, the more easily the content
of an image is recognizable, the lower the level of visual
confidentiality: recognizability and privacy are consequently
antagonist.

III. EXPERIMENTAL RESULTS

In this section, we present experimental results assessing the
feasibility of combining forensics and privacy requirements for
digital images. First, we provide an illustration of selectively
encrypted images and standardized images in order to visualize
the high frequency information. We then describe the training
and the classification results obtained for the tampering de-
tection and the recognizability tasks considering selectively
encrypted images. Finally, we discuss the trade-off between
tampering detection and privacy.

A. Examples of selectively encrypted images

In Fig. 2, we first present the luminance component of the
original image Au ani 00001 from the CASIA2 database [10].
As an illustration, in the first row of the figure, we display
selectively encrypted images obtained by encrypting s bit-
planes of this image, from MSB to LSB and with 1 ≤ s ≤ 7
(from left to right). One can notice that as soon as at least two
bit-planes are encrypted, it is visually difficult to recognize the
original image content. Indeed, in this example, distinguishing
the silhouette of the zebra is not an easy task. In the second
row, the presented images have been obtained by setting to
zero the s encrypted bit-planes of the selectively encrypted
images and by performing a classical image standardization.
Even after this process, the content of the original image is
unrecognizable when at least five bit-planes are encrypted.
This kind of images are taken as input of the CNN for the
recognizability task. Moreover, they illustrate the significant
information for classification in both forensics analysis and
privacy evaluation tasks.

B. Forensics analysis

The CASIA2 database [10] consists of authentic and tam-
pered images (cloned or spliced) on JPEG or TIFF formats and
with a size between 240×160 and 900×600 pixels [10]. One
can note that: 1) tampered images have been generated using
a subset of authentic images, and 2) several tampered images
have been issued from the same authentic images. In order to
remove this bias in the construction of the database, we have
randomly picked 1,000 authentic images and 1,000 tampered
images in the full database making sure that there is no
overlap between images, i.e. an image content only appears
one time. Then, we have designed eight associated databases of
selectively encrypted images, by encrypting between 1 to 8 bit-
planes from MSB to LSB. After that, each of them has been
processed separately. Into each database, images have been
split into two balanced subsets with as many authentic images
as tampered images: 80% of the images have been used for
training and the remaining 20% for test. As feature extractor,
we have used SRMQ1 [7]. In Table I, we present the accuracy
scores obtained during the test phase as a function of the
number of encrypted bit-planes. First of all, on clear images
(i.e. without encryption), we can see that the accuracy is equal
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TABLE I
ACCURACY FOR TAMPERING DETECTION USING SRMQ1 [7] AS A FUNCTION OF THE NUMBER OF ENCRYPTED BITPLANES (FROM MSB TO LSB).

Feature
extraction

Number s of encrypted bitplanes
0 1 2 3 4 5 6 7 8

Without pre-processing 0.90 0.81 0.76 0.69 0.62 0.61 0.55 0.54 0.50
With encrypted bitplanes set to zero 0.90 0.87 0.87 0.86 0.84 0.81 0.79 0.72 0.50

TABLE II
ACCURACY FOR THE RECOGNIZABILITY TASK AS A FUNCTION OF THE NUMBER OF ENCRYPTED BITPLANES (FROM MSB TO LSB).

Image
database

Number s of encrypted bitplanes
0 1 2 3 4 5 6 7 8

CASIA2 [10] 0.76 0.68 0.56 0.45 0.36 0.29 0.25 0.26 0.14
Intel [12] 0.93 0.89 0.82 0.73 0.60 0.52 0.45 0.49 0.17

Cifar10 [13] 0.87 0.68 0.52 0.37 0.23 0.13 0.09 0.10 0.10

to 0.90 even using a feature extractor as simple as SRMQ1.
To put this result in perspective with the state of the art,
one of the best performing method [14] uses CNN to achieve
0.97 accuracy, using 1:6 train to test ratio. Moreover, we can
see that the pre-processing step consisting in discarding the
encrypted bit-planes is relevant. If the performances are still
quite good for s = 1 and s = 2 without pre-processing, the
accuracy score falls significantly as soon as three bit-planes
are encrypted. With encrypted bit-planes set to zero, what is
particularly interesting is that, even with a reduced number of
bit-planes in clear, accuracy remains high. Indeed, it is higher
than 0.80 considering at least three bit-planes in clear and
remains higher than 0.70 with only one or two bit-planes in
clear. Therefore, with a very small amount of information on
high frequencies, the tampering detection task is possible. Note
that the results obtained using SRMQ1 are comparable with
those achieved using SRM, which highlights that the simplified
version of SRM can be used in practice.

C. Recognizability

The recognizability of image content is assessed by auto-
matically predicting the image class.

The CASIA2 database also provides coarse categories for
image content: animals, architecture, art, character, indoor,
nature, plants, text and sec. We choose to use the 7, 491 au-
thentic images of the CASIA2 database for this task because
authentic images are well labeled and do not contain falsifi-
cation on which the model may focus. The number of images
is relatively small thus, we propose to use the VGG11 [15]
network pre-trained on ImageNet [16] as our baseline model.
The database is randomly split into two subsets with 80:20
ratio for train and test. Images are cropped at their center to a
size of 224×224 pixels to be passed as input of the model. The
model is fine tuned using the train set, it converges quickly
and it is stopped before overfitting. The model can predict
CASIA2 classes with an accuracy of 0.76 on the test set. This
task is difficult because classes are not well defined and there
are some overlap. Nevertheless, it shows that the model is able
to predict CASIA2 classes on clear images.

In order to see if the content is still recognizable after the
encryption of the s most significant bitplanes, the baseline
model is fine tuned using the same training set in which images
are selectively encrypted. As we have to consider that the
number s is known, the best case for image classification is
to work directly on the clear bits of the image. Therefore,
image pixels are transformed using Eq. (3). In practice, as
we want to standardize the model inputs, it is sufficient to
apply the left shift operation pE(i, j)� s and then standardize
images using classical image standardization. We also perform
these experiments on the selectively encrypted dataset. With
s = 1, the accuracy of the recognizability task is only of
0.37, and for s > 1, the accuracy is close to 0.14. Indeed,
the model does not directly converge toward the extraction
of features that do not rely on the s encrypted bits. Thus,
it tends to classify all images into the most common class,
i.e. the “animal” class which represents 14% of the base.
The fine tuning and testing phases have been independently
done for s ∈ {0, 7}, where s = 0 means the image is
in clear. The obtained results are reported in Table II. We
also present results we have obtained using the Intel image
classification [12] and the Cifar10 [13] databases which were
designed for image classification. The total images in each
class is balanced. Intel image classification database contains
17, 034 images of 150×150 pixels (14, 034 for train and 3, 000
for test) separated into 5 classes: “sea”, “mountain”, “build-
ings”, “forest”, “street” and “glacier”. CIFAR10 database is
composed of 6, 000 images of 32× 32 pixels (5, 000 for train
and 1, 000 for test) belonging to one of 10 classes: “airplane”,
“automobile”, “bird”, “cat”, “deer”, “dog”, “frog”, “horse”,
“ship” and “truck”. The recognizability task performs better
on the Intel database because its classes are well separated,
whereas in CIFAR10 there are classes that are close such as
“birds” and “plane” or “automobile” and “truck”. Note that the
trend observed on the CASIA2 database is firmly established.

D. Trade-off between tampering detection and privacy

In Fig. 3, we illustrate the trade-off between tampering de-
tection accuracy and privacy, as a function of the number s of
encrypted bit-planes. These results were obtained using images
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from the CASIA2 database. On the one hand, we can see that,
from one to five encrypted bit-planes, the tampering detection
accuracy is very good (higher than 0.8). On the other hand,
the privacy index (computed from recognizability accuracy,
as explained in Section II-C), is higher than 0.5 as long as
at least three bit-planes are encrypted. This means that the
classification rate is low for recognizability, i.e. the class of the
image is mis-predicted on average. Therefore, this highlights
that an interesting trade-off for combining tampering detection
and privacy is achieved for three to five encrypted bit-planes.
In particular, when five bit-planes are encrypted, tampering
detection accuracy is equal to 0.81 and the privacy index is
equal to 0.71. Fig. 2 illustrates the fact that it is very difficult
to visually recognize the content of the selectively encrypted
image when five bit-planes are encrypted, even by considering
the associated standardized image. Moreover, depending on
the application, it can be interesting to favor one of the other
classification task (integrity check vs visual confidentiality).

0 1 2 3 4 5 6 7 8

Number s of encrypted bitplanes (from MSB to LSB)

0.0

0.2

0.4

0.6

0.8

1.0

Tampering detection accuracy

Using SRMQ1

Random classification

Privacy index

Fig. 3. Trade-off between tampering detection accuracy and privacy as a
function of the number s of encrypted bitplanes (from MSB to LSB).

IV. CONCLUSION

In this paper, we have performed an analysis on selectively
encrypted images to observe the trade-off between tampering
detection and privacy. We have shown that SRMQ1 features
can be used for a forensics analysis of selectively encrypted
images. Moreover, privacy has been assessed experimentally
by measuring the recognizability of an image content after
encryption using a CNN. According to our experiments, an
accuracy of more than 80% for tampering detection is achieved
when s = 0 to s = 5 bitplanes are encrypted, whereas the
visual confidentiality is ensured as soon as s = 3 bitplanes
are encrypted.

In future work, we are interested by improving the classifi-
cation performances during the forensics analysis using more
specific tools, as those used for non-encrypted images. These
approaches often rely on deep learning. Therefore, they may
require using a larger database than CASIA2. It also could
be interesting to investigate the tampered areas localization
too, as done in clear [17]. Moreover, being able to identify

the integrity threat from visually confidential image content
should be relevant. Regarding the recognizability task, instead
of only predicting the image class, we are planning to take
an interest in object detection (its localization and its class)
in protected images. Consequently, a subjective validation,
involving human evaluation, should also be conducted.
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