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Abstract—The use of low-resolution quantization is a
promising approach to reduce the power consumption of
the analog-to-digital converters (ADCs) of future wireless
communications systems. In this work, we investigate a multi-
user MIMO downlink scenario with 1-bit quantization and
temporal oversampling at the receivers. The information is
encoded in the zero-crossings (ZXs) in such systems, a concept
which is known as zero-crossing modulation (ZXM). ZXM
could enable energy-efficient communications in the internet of
things (IoT) or wideband systems operating on millimeter-wave
and terahertz bands. Here, we compare two practical ZXM
waveform mappings in terms of their uncoded bit error rate
and evaluate a lower bound on their spectral efficiency when
employing minimum mean squared error (MMSE) precoding.

Index Terms—1-bit, quantization, oversampling, precoding

I. INTRODUCTION

Beyond 5G systems are foreseen to support a massive number
of internet of things (IoT) devices, operating at low data rates [1].
Such scenarios require low-cost devices with battery lifetimes in
the order of several years. Employing 1-bit quantization at the
receiver could enable simple low-cost energy-efficient receivers
for such systems because the analog-to-digital converter (ADC)
power consumption typically grows exponentially in the number
of bits [2], i. e., in the amplitude resolution.

Some of the loss due to 1-bit quantization can be compensated
for by employing temporal oversampling w. r. t. the Nyquist rate.
In [3] it has been shown that rates of log2(MRx + 1) bits per
Nyquist interval are achievable in the noiseless case by MRx-
fold oversampling. The authors of [4] propose and evaluate a
practical system concept based on the idea from [3] and show
that similar rates can also be achieved over noisy channels.
Lower bounds on the achievable rate for a large number of
transmit signal designs tailored to systems employing 1-bit
quantization and temporal oversampling have been evaluated
in [5]. Employing runlength-limited (RLL) sequence transmit
signals, as first proposed in [6], has been found promising
therein. A practical implementation of a system employing
1-bit quantization and temporal oversampling in combination
with RLL transmit sequences has been evaluated in [7], [8].

The gain of employing oversampling in a 1-bit quantized
massive multiple-input multiple-output (MIMO) uplink scenario
has been investigated in [9]. In [10] it has been shown that in
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wideband systems temporal oversampling can achieve a similar
performance as spatial oversampling at a reduced complexity.
Spatio-temporal precoding for a multi-user massive MIMO
downlink, where the receivers employ 1-bit quantization and
temporal oversampling, has been studied in [11]. Two superior
bit mappings and precoding schemes for the same scenario
have been investigated in [12], [13].

In this work, we consider the same multi-user MIMO down-
link scenario as in [11]–[13], where the receivers employ 1-bit
quantization and temporal oversampling. Furthermore, we utilize
the spatio-temporal minimum mean squared error (MMSE)
precoder from [13]. For this setup, we compare two practical
mappings from bits onto zero-crossings (ZXs) to implement
zero-crossing modulation (ZXM) [14]. The considered mappings
are: i) The time-instance ZX mapping from [13], and ii) the
RLL sequence based mapping which has been derived in
[7]. Furthermore, instead of using the soft-input soft-output
RLL decoder from [7], we present a low-complexity minimum
Hamming distance Viterbi algorithm for RLL sequence decoding.
Moreover, in contrast to the prior works [12], [13], we propose
and numerically evaluate a simple spectral efficiency (SE) lower
bound, which depends on the system’s uncoded bit error rate
(BER). Finally, we show numerically that the considered ZX
mappings significantly outperform the quantization precoding
(QP) from [11] at low signal-to-noise ratios (SNRs).

The remainder of this paper is organized as follows: First,
we briefly review the two considered ZX mappings in Sec. II.
Then we detail the system model, spatio-temporal MMSE
precoding, and minimum Hamming distance detection in Sec. III.
Afterwards, in Sec. IV, we derive a simple lower bound on the
system’s SE. Numerical results are presented in Sec. V. Finally,
our work is concluded in Sec. VI.

Notation: Vectors and matrices are denoted by lower and
uppercase boldface letters, i. e., x and X , respectively. The nth
element of the vector x, i. e., a scalar quantity, is denoted as
xn = [x]n. The identity matrix of size N ×N is written as IN .
Moreover, expectation, trace and Kronecker product operations
are denoted by E{·}, tr{·} and ⊗, respectively.

II. ZERO-CROSSING MAPPINGS

In this section, we briefly review two existing practical
ZX mappings for systems employing 1-bit quantization and
temporal oversampling at the receiver. Both ZX mappings are
subsequently used in Sec. III to independently modulate the
in-phase and quadrature component of the transmit signal.
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A. Time-Instance Zero-Crossing Mapping

A time-instance ZX mapping has been proposed in [12],
[13]. It is designed for receivers employing 1-bit quantization
and MRx-fold oversampling, such that each Nyquist interval
is associated with MRx binary samples. The receiver can detect
ZXs in one of the MRx sub-intervals or the absence of a
ZX, hence, resulting in MRx + 1 unique patterns per Nyquist
interval. This implies that the information is conveyed in the
ZX time-instances per Nyquist interval.

For MRx = 3, to encode the ith Nyquist interval, the encoder
maps two input bits onto one of the MRx + 1 = 4 possible
ZX patterns cs,i (cf. [13, Table II]). Each Nyquist interval
is associated with two possible codewords cs,i, since the ZX
may be from positive to negative amplitudes or vice versa.
Consequently, the pattern of each segment cs,i depends on
the last sample pi−1 of the previous codeword cs,i−1. The
employed time-instance ZX mapping codewords are listed in
[13, Table I-II], where inputs and outputs are read from left-

to-right. Note that in case of MRx = 2 (cf. [13, Table I]), three
input bits are mapped onto ZXs over two consecutive Nyquist
intervals, i. e., each cs,i spans two Nyquist intervals.

Finally, for each user k, the combined transmit
sequence coutk = [pb, c

T
s,0, . . . , c

T
s,N−1]T with total length

Ntot = NMRx + 1 is obtained by concatenating the segments
cs,i. Given the dependency of the construction of cs,i on
the previous code segment cs,i−1, a single pilot symbol
pb ∈ {1,−1} is inserted at the beginning of the sequence to
initialize the encoding and decoding.

B. Runlength-Limited Zero-Crossing Precoding

Using RLL sequences [15] for systems employing 1-bit
quantization and temporal oversampling has been proposed in
[5], [6]. They are a natural choice for such systems because
the information is conveyed in the temporal distance between
ZXs, which can be recovered after 1-bit quantization.

RLL sequences are discrete bipolar sequences, typically with
amplitude ±1, which are constraint such that the minimum and
maximum distance between two amplitude transitions is given
by d+ 1 and k + 1, respectively [15]. An example for an RLL
sequence with constraint (d = 1, k =∞) is given below:

coutk = [. . . ,+1,+1,+1,−1,−1,+1,+1,+1,−1,−1, . . .]
T
.

The minimum runlength constraint, also denoted as d-constraint,
is introduced to reduce inter-symbol interference (ISI), whereas
the maximum runlength constraint, also denoted as k-constraint,
is introduced to ensure proper synchronization. The k-constraint
is omitted here, i. e., we set k = ∞, as we do not consider
synchronization. The reader is referred to [15] for more details
on RLL sequences.

In this work, we employ the finite-state machine (FSM) RLL
codes, which where derived in [7]. The encoder is initialized to
a pre-defined state s0 ∈ SRLL, where SRLL denotes the set of
all encoder states. Then, depending on the current state s0 and
the current input block of p bits, the encoder produces an output
RLL sequence block of length q and translates into a new state
s1. The procedure is repeated for each input block. The code
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Fig. 1. Considered multi-user MIMO downlink system model.

rate is consequently given by RRLL = p/q. The encoders are
specified in [7, Table I-II].

C. Discussion

The encoding process for the time-instance ZX mapping
depends on the last symbol of the previous codeword, hence,
the encoder can also be considered as a FSM encoder with
two internal states. Therefore, the encoders of both mappings
are closely related. However, when comparing the encoding
tables [13, Table I-II] and [7, Table I-II], we conclude that the
encoding process for RLL sequences is more complex.

The different complexity is partly due to the significantly
different distribution of the ZXs of the two considered mappings:
The ZXs in the time-instance ZX mapping are approximately uni-
formly distributed (cf. [13, Table I-II]), whereas the considered
FSM RLL codes approximate maximum entropy RLL sequences,
where the ZXs follow a truncated geometric distribution [15].
Additionally, the RLL d-constraint reduces ISI, which is not
the case for the time-instance ZX mapping.

III. SYSTEM MODEL

In this work, we consider the multi-user MIMO downlink
scenario from [11]–[13] consisting of a single base station (BS)
with Nt antennas and Nu single-antenna users. The system
model is depicted in Fig. 1. At the BS, the per-user bit vectors,
denoted by xk ∈ {0, 1}Ib , Ib ∈ N, k ∈ {1, . . . , Nu}, are first
modulated using one of the considered ZX mappings (cf. Sec. II).
The outputs of the ZX modulator are written as coutk ∈ CNtot .
Afterwards, MMSE space-time precoding over blocks of N
Nyquist intervals is employed, which yields the precoded per
antenna streams pxn ∈ CMTxN+1, where MTx/T denotes the
signaling rate and T denotes the Nyquist interval of the transmit
filter. For MTx > 1 this implicitly corresponds to faster-than-
Nyquist (FTN) signaling [16]. Transmit and receive filters are
written as gTx(t) and gRx(t) respectively. Then, the combined
transmit and receive filter is given by v(t) = (gTx ∗ gRx) (t).
Furthermore, we assume a frequency-flat fading channel, denoted
by H ∈ CNu×Nt , which is known at the BS.

The Nu receivers employ MRx-fold oversampling w. r. t. the
Nyquist rate, such that the sampling rate is given by MRx/T .
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Then, stacking the received samples of the Nu users prior to
quantization yields the following vector of length NuNtot

y = Heff px + GRx,eff n, (1)

where px ∈ CNt(MTxN+1) represents the space-time precoding
vector and n ∈ C3NtotNu denotes a zero-mean complex
Gaussian noise vector with variance σ2

n. Furthermore, Heff =
(H ⊗ INtot) (INt ⊗ V U) and GRx,eff = (INu ⊗GRx) denote
the effective channel and the effective receive filter matrices,
respectively. They are defined using the waveform impulse
response matrix V and the receive filter matrix GRx, which are
of size Ntot ×Ntot and Ntot × 3Ntot, respectively. The matrices
are given by

V =


v (0) v

(
T

MRx

)
· · · v (TN)

v
(
− T

MRx

)
v (0) · · · v

(
T

(
N − 1

MRx

))
...

...
. . .

...
v (−TN) v

(
T

(
−N + 1

MRx

))
· · · v (0)


(2)

and

GRx = aRx


[
gT

Rx

]
0 · · · 0

0
[
gT

Rx

]
0 · · · 0

. . . . . . . . .
0 · · · 0

[
gT

Rx

]
 , (3)

with aRx = (T/MRx)1/2 and gRx =
[
gRx(−T (N +M−1

Rx )),

gRx(−T (N +M−1
Rx ) + T M−1

Rx ), . . . , gRx(T (N +M−1
Rx ))

]T
.

Furthermore, the M -fold upsampling matrix U with dimensions
Ntot ×Nq is defined by

[U ]m,n =

{
1, for m = M · (n− 1) + 1

0, else,
(4)

where M denotes the effective oversampling factor with respect
to the signaling rate, i. e., M = MRx/MTx. Afterwards, 1-bit
quantization is employed, which yields

z = Q1 (y) = Q1 (Heff px + GRx,eff n) , (5)

where Q1(·) denotes independent 1-bit quantization of the real
and imaginary parts, which is performed element-wise.

A. MMSE Precoding

The optimal MMSE precoding vector px is obtained according
to the mean squared error (MSE) criterion under a constrained
on the maximum total transmit energy E0. Considering a scaling
factor in the MMSE problem formulation as presented in [13]
and taking into account the combined desired output pattern
cout, the design of the space-time MMSE precoder can be cast
as the following optimization problem

min
f,px

E
{
‖f(Heffpx + GRx,effn)− cout‖22

}
(6a)

s.t. pH
x AHApx ≤ E0, (6b)

with A =
(
INt ⊗GT

TxU
)

and where GTx denotes a Toeplitz
matrix of size Ntot × 3Ntot, which is given by

GTx = aTx


[
gT

Tx

]
0 · · · 0

0
[
gT

Tx

]
0 · · · 0

. . . . . . . . .
0 · · · 0

[
gT

Tx

]
 , (7)

with aTx = (T/MTx)1/2 and gTx =
[
gTx(−T (N +M−1

Tx )),

gTx(−T (N +M−1
Tx ) + T M−1

Tx ), . . . , gTx(T (N +M−1
Tx ))

]T
.

Following the same derivation as in [13], the optimal solution
of (6) is given by

px,opt =
1

f

(
HH

effHeff +
tr{GH

RxCnGRx}
E0

AHA

)−1

HH
effcout,

(8)

where Cn denotes the noise covariance matrix and the scaling
factor is given by f =

√
cHoutΓ̄

HΓ̄cout/E0, with

Γ̄ = A

(
HH

effHeff +
tr{GRx,effCnG

H
Rx,eff}

E0
AHA

)−1

HH
eff.

(9)
The reader is referred to [13] for more details on the precoding.

B. Detection

As the design goal of the considered system model is to
reduce the complexity at the receiver, the complexity of detection
should be low. Hence, we focus on minimum Hamming distance
decoding, similar to the works [11]–[13]. In the following, we
briefly discuss detection for both considered ZX mappings.

1) Time-Instance Zero-Crossing Detection: For ease of
notation, we describe detection for the case MRx = 3.
Detection for MRx = 2 is performed similarly. Following
the approach from [12], [13], we introduce the inverse ZX
mapping ~d : [pi−1, c

T
s,i] → {0, 1}2 (cf. Sec. II-A). Then, to

detect the data corresponding to the ith Nyquist interval, we
construct a vector z̄i = [pi−1, zi]

T ∈ {+1,−1}MRx+1, where
pi−1 corresponds to the last sample of the received sequence
from Nyquist interval (i − 1) and the vector zi denotes the
MRx samples obtained in the ith Nyquist interval.

In the noise-free case, it is possible to detect the segment
directly by employing the inverse mapping ~d(·). However,
invalid segments may appear due to noise. Therefore, we make
use of minimum Hamming distance decoding, which yields the
following detection rule

x̂i = ~d(c), with c = arg min
cmap∈M

Hamming(z̄i, cmap), (10)

where cmap = [pi−1, cs,i]
T , M denotes all possible forward

mappings as specified in [13, Table II], and Hamming(z̄i, cmap)
denotes the Hamming distance between z̄i and cmap.

The detection of the first Nyquist interval in the sequence
is done taking into account the pilot symbol pb. Furthermore,
note that the real and the imaginary parts can be detected
independently in separate processes.
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Algorithm 1: Viterbi RLL Sequence Detection
Inputs: K, s0
Initialization: Γ(s = s0) = 0, Γ(s 6= s0) =∞
for k = 0 to K − 1 do

for sk+1 ∈ SRLL do
Update path metric:
Γ(sk+1) = min

sk∈SRLL

Γ(sk) + λk(sk, sk+1)

Store survivor sequence:
x̂(sk+1) = [x̂T (sk), ~σT (sk, sk+1)]T

end
end
return x̂(sK) where sK = arg min

sK∈SRLL

Γ(sK)

2) Runlength-Limited Sequence Detection: For RLL
sequence detection, we present a low-complexity minimum
Hamming distance Viterbi algorithm [17]. The algorithm is
implemented on the time-invariant trellis, which is defined
by the FSM RLL encoders given in [7, Table I-II]. Trellis
states and transitions are denoted by sk ∈ SRLL and
(sk = m, sk+1 = m′) ∈ TRLL, respectively. The forward
mapping σ(m,m′) ∈ {+1,−1}q denotes the output for a
transition (m,m′) ∈ TRLL. Furthermore, ~σ(m,m′) ∈ {0, 1}p
denotes the inverse mapping for a transition (m,m′) ∈ TRLL,
i. e., it specifies the input bits corresponding to this transition.
Then, we define the Hamming distance branch metric as

λk(m,m′) =

q∑
n=1

1

2

∣∣[z](k−1)q+(n−1) − [σ(m,m′)]n
∣∣ , (11)

where [z]n and [σ(m,m′)]n denote the nth element of z
and σ(m,m′), respectively. Finally, the minimum Hamming
distance Viterbi algorithm is given by Algorithm 1 (cf. [18]),
where K = NMRx

q and s0 ∈ SRLL denote the number of
decoder iterations and the start state, respectively.

IV. SPECTRAL EFFICIENCY

In this section, we obtain a lower bound on the SE for the
considered system model. First, we evaluate the average mutual
information limIb→∞

1
Ib
I (xk; x̂k), where xk ∈ {0, 1}Ib and

x̂k ∈ {0, 1}Ib denote the transmitted bit sequence and its
estimate at the kth user, both of length Ib. In the following,
we drop the index k for ease of notation. If the sequence x
is i. i. d., then it holds H (x) =

∑Ib
n=1H (xn) [19, Th. 2.6.6],

where H(·) denotes entropy. Hence, we obtain

1

Ib
I (x; x̂)

(a)

≥ 1

Ib

Ib∑
n=1

H (xn)− 1

Ib

Ib∑
n=1

H (xn|x̂n)

= 1− 1

Ib

Ib∑
n=1

Hb (Pr(xn 6= x̂n))

(b)

≥ 1−Hb

(
1

Ib

Ib∑
n=1

Pr(xn 6= x̂n)

)
, ĪLB, (12)

where the inequality (a) is due to the chain rule for information
[19, Th. 2.5.2], due to independent xn, and due to the fact

that conditioning cannot increase entropy [19, Th. 2.6.5]. The
last step, i. e., (b), is due to Jensen’s inequality [19, Th. 2.6.2].
Furthermore, Hb(·) denotes binary entropy (cf. [19, eq. (2.1)])
and 1

Ib

∑Ib
n=1 Pr(xn 6= x̂n) corresponds to the uncoded BER.

TABLE I
CONSIDERED ZERO-CROSSING MAPPING CONFIGURATIONS.

Number of Nyquist intervals per block N = 30
Precoding MTx = MRx Ib Os Ξ [bit/T /dim]

Time-instance, [13, Table I] 2 45 60 1.5
Time-instance, [13, Table II] 3 60 90 2
RLL d = 1, [7, Table I] 2 40 60 1.33
RLL d = 2, [7, Table II] 3 45 90 1.5

Using (12), a lower bound on the SE can be obtained as

SELB =
2 · Ξ · ĪLB

1 + εTx
, (13)

where the factor 2 in the numerator is due to complex signaling
and Ξ denotes the transmission rate of the considered mapping in
bit per Nyquist interval per real signaling dimension (cf. Table I).
Furthermore, εTx denotes the roll-off of the raised cosine (RC)
transmit filter. Note that in contrast to [5], [6], [8], the SE lower
bound in (13) is evaluated w. r. t. a strictly band-limited channel.

V. NUMERICAL RESULTS

Here, we compare the performance of the considered ZX
mappings numerically. Simulation parameters are listed in
Table I, where Ib and Os denote the number of input bits and
output symbols per block of N Nyquist intervals. For the RLL
mapping, we always choose d = MTx−1. The SNR is defined as

SNR =
E0/(NT )

N0(1 + εTx)/T
=

E0

NN0(1 + εTx)
, (14)

where N0 denotes the noise power spectral density. Simulation
results are obtained for a system with Nt = 8 transmit antennas
and Nu = 2 single-antenna users. The entries of H are i. i. d.
zero-mean complex Gaussian distributed with unit variance. The
receive and the transmit filters are chosen as a root-raised cosine
and RC, respectively; each with roll-off factor εRx = εTx = 0.22,
i. e., parameters are chosen similar to [11]. Furthermore, for
all numerical evaluations it holds MRx = MTx.

First, we evaluate the uncoded BER for all ZX mapping
configurations from Table I in Fig. 2.a. Comparing the time-
instance ZX mapping with MTx = 2 and the RLL ZX mapping
with MTx = 3, which both achieve the same transmission rate
(cf. Table I), we notice that for SNRs above approx. 10 dB, the
RLL ZX mapping achieves a substantially lower uncoded BER.
Note that the remaining configurations are difficult to compare,
as they result in different transmission rates (cf. Table I).

In Fig. 2.b we evaluate the SE lower bound given in
(13). For SNRs below 0 dB, all schemes show a similar
performance. The RLL ZX mappings achieve the highest SE
for all considered SNRs. However, the encoding and decoding
complexity of the RLL ZX mappings is also higher. For SNRs
below and above 10 dB, the highest SE is achieved using
the RLL mapping with MTx = 2 and MTx = 3, respectively.
Surprisingly, the time-instance ZX mapping achieves a higher
SE for MTx = 2 as for MTx = 3. This could be caused by
increased ISI in case of higher MTx.

Finally, for MTx = 2, we compare the SE lower bound for the
ZX mappings to QP [11]. QP involves zero-forcing spatial pre-
coding and per user maximal minimum distance to the decision
threshold (MMDDT) codebook optimization [11], i. e., temporal
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Fig. 2. For all evaluations it holds MRx = MTx. In (a) we compare the uncoded BER. In (b) we evaluate the lower bound on the SE for a bandlimited channel.
All ZX mappings achieve a substantially higher SE as compared to standard QPSK signaling with 1-bit quantization [20]. In (c) we compare the SE lower
bound of the considered ZX mappings to QP [11]. We also compare to a modified QP [11] with spatio-temporal MMSE precoding, denoted as QP w/ MMSE.

precoding; its performance is depicted in Fig. 2.c. Because
MMDDT precoding is known to outperform MMSE precoding at
high SNR, whereas MMSE precoding is better at low SNR [13],
we also consider a modified version of QP here: We optimize
a single codebook for all users w. r. t. the MSE criterion and
then employ MMSE precoding from Sec. III-A. This scheme is
denoted as QP w/ MMSE in Fig. 2.c. The ZX mappings achieve
a significantly higher SE as QP with MMSE precoding for
SNR > 0 dB. This demonstrates the effectiveness of signaling
in the time-domain, i. e., encoding the information in the ZXs, as
compared to signaling in the amplitude-domain, e. g., using QP,
for systems employing 1-bit quantization and oversampling. QP
achieves the highest SE at high SNR, which is also partly due
to MMDDT precoding. However, in practice, the complexity of
QP is prohibitive as it involves optimization and transmission
of a codebook for each user and channel realization [11].

VI. CONCLUSIONS

In this work, we compared time-instance and runlength-
limited (RLL) zero-crossing (ZX) mappings for a multi-user
MIMO downlink scenario, where the receivers employ 1-bit
quantization and oversampling. The RLL ZX mapping was
found to achieve a lower uncoded BER and a higher spectral
efficiency (SE), whereas the time-instance ZX mapping offers
a lower complexity and an only slightly lower SE. Both
considered ZX mappings achieved a significantly higher SE
at low SNR compared to quantization precoding [11], while
simultaneously offering a lower complexity. This demonstrates
the advantage of signaling in the time-domain for systems
employing 1-bit quantization and oversampling.
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