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Abstract—This paper tackles the problem of transmit
beamforming with 1-bit digital-to-analog and analog-to-
digital converters. While, at frequencies above 100 GHz,
such 1-bit converters are instrumental to restrain the power
consumption and enable transmissions spanning many giga-
hertz of bandwidth, they fundamentally alter the nature of
the communication problem. Transmit beamforming, a key
task when communicating at these high frequencies, then
amounts to identifying the quartet of channel-dependent
transmit vectors that maximizes the mutual information.
This problem, which becomes unwieldy for even modest
numbers of antennas, is herein tackled by means of an
unsupervised learning approach that proves effective for very
large arrays.

I. INTRODUCTION

The next frontier in the quest for fresh spectrum over
which to communicate wirelessly is the terahertz band,
broadly taken to be 100 GHz–10 THz [1]. Although there
are reasons why this band remains largely unexplored,
some of the long-standing obstacles look increasingly
surmountable [2]. Because of the lack of diffraction
and atmospheric attenuation, propagation is predominantly
line-of-sight (LOS) and short-range, but that is compatible
with a number of emerging applications.

A major challenge to ultrabroadband communication at
terahertz frequencies is the power consumption associated
with high-resolution digital-to-analog (DAC) and analog-
to-digital (ADC) conversion at transmitter and receiver,
respectively. Precisely, high-resolution DACs go hand in
hand with highly linear power amplifiers whose efficiency
is very poor [3]. In turn, the ADC power consumption
grows linearly with the bandwidth and exponentially with
the number of resolution bits [4].

The crux of the power consumption issue is therefore
the resolution of the converters, and the natural solution
is to lower that resolution. Taken to the limit, this leads
to 1-bit DACs and ADCs, which do drastically curb the
power consumption, at the expense of an exceedingly
nonlinear behavior that severely distorts the signals. There
is extensive literature on transmission strategies and the
ensuing performance with 1-bit ADCs but full-resolution
DACs (see [5]–[8] and references therein), and a smaller
but growing body of work that considers 1-bit converters
at both ends [9]–[18].

Because of the extremely high omnidirectional pathloss
at terahertz frequencies, antenna arrays are instrumental
and a central problem is that of transmit beamforming. In

the face of 1-bit DACs and ADCs, the beamforming prob-
lem amounts to the identification of the most appropriate
quantized transmit vectors for each channel realization.
From such general starting point, it was proposed in [11]
to determining those beamforming vectors on the basis
of minimizing the uncoded bit error probability. More
fundamentally, though, the beamforming vectors should
be determined on the basis of maximizing the mutual
information [17]. At low SNR, this is tantamount to
maximizing the received power, and efficient ways have
been put forth to identify the corresponding vectors [19].
More generally, though, this is a binary optimization that
entails a burdensome comparison over all possible vectors
spawn by the transmit array, the number of which grows
exponentially with the number of antennas.

To tame this problem and enable beamforming with
large arrays, we advocate a learning-based technique and
seek to approximate the mapping between channel realiza-
tions and transmit vectors by means of a neural network
(NN). And, to circumvent the need for labelled training
data, which would require solving the problem we seek to
overcome in the first place, we espouse an unsupervised
form of learning [20].

II. SIGNAL AND CHANNEL MODELS

A. Signal Model

Consider a transmitter equipped with Nt antennas and
1-bit DACs per complex dimension. The receiver, which
features one antenna with a 1-bit ADC per complex
dimension, observes

y = sgn

(√
SNR

2Nt
hx+ z

)
(1)

where the sign function applies separately to the real and
imaginary parts of each entry, such that y ∈ {±1 ± j},
while h is the 1 ×Nt channel row vector normalized to
have unit-variance entries, z ∼ NC(0, 1) is the noise, and
SNR is the signal-to-noise ratio per receive antenna in
the absence of beamforming. The Nt×1 transmit column
vector x has entries xn ∈ {±1± j} for n = 1, . . . , Nt.

Since x and y are discrete-valued, (1) embodies, for
each given h, a discrete memoryless channel with 4Nt×4
transition probabilities. These transition probabilities are
determined by [14]

py|x = p<{y}|x p={y}|x, (2)
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where the factorization follows from the independence of
the real and imaginary noise components. Each such noise
component has variance 1/2, hence

p<{y}|x(1|x) = Pr

[√
SNR

2Nt
<{hx+ z} > 0

]
(3)

= Pr

[
<{z} > −

√
SNR

2Nt
<{hx}

]
(4)

= Q

(
−
√

SNR

Nt
<{hx}

)
(5)

where

Q(ξ) =
1√
2π

∫ ∞
ξ

e−u
2/2 du (6)

is the Gaussian Q-function. Similarly,

p<{y}|x(−1|x) = Q

(√
SNR

Nt
<{hx}

)
. (7)

From (5) and (7), we can write

p<{y}|x(<{y}|x) = Q

(
−<{y}

√
SNR

Nt
<{hx}

)
(8)

and, mirroring it for the imaginary part,

py|x(y, x) = Q

(
−<{y}

√
SNR

Nt
<{hx}

)

·Q

(
−={y}

√
SNR

Nt
={hx}

)
. (9)

The transition probabilities correspond to (9) evaluated
for the 4 possible values of y and the 4Nt values of x. If
h is known, these transition probabilities can be readily
computed. Conversely, if the transition probabilities are
known, h can be deduced.

B. Channel Model

For the sake of completeness, we consider the two
extremes in terms of the distribution of h:

1) IID Rayleigh-faded entries.
2) LOS propagation with planar wavefronts, whereby

the entries of h are governed by a few geometric
parameters. For instance, with a uniform linear array
(ULA) having antenna spacing dt, and under the
premise of planar wavefronts,

hn = e−j
2π
λ ndt cos θ n = 1, . . . , Nt (10)

where θ is the angle spanned by the transmit-
receive direction and the ULA while λ denotes the
wavelength.

III. TRANSMIT BEAMFORMING

The set of 4Nt possible transmit vectors x can be par-
titioned into 4Nt−1 quartets, each containing four vectors
and being invariant under a 90◦ phase rotation of all the
entries: from any vector in the quartet, the rest are obtained
by repeatedly multiplying by j. Since a 90◦ phase rotation
of x propagates as a 90◦ phase rotation of hx, and the
added noise z is rotationally invariant, the vectors within
each transmit quartet are statistically equivalent and they
should thus have the same probability of being transmitted
so as to convey the maximum amount of information; this
intuition is formalized in [17, lemma 1].

By the same token, for every transmit vector giving rise
to a specific value of y there are three rotated transmit
vectors (the other members of the quartet) that give rise
to the other possible values of y with equal probability.
Consequently, and irrespective of the channel realization,
y takes the four values ±1 ± j equiprobably; again, this
intuition is formalized in [17].

Let h be known by both transmitter and receiver, and let
H(·) stand for entropy. The mutual information between
x and y for a given h satisfies

I(x; y|h) = H(y|h)−H(y|x,h) (11)
= 2−H(y|x,h) (12)

where (12) follows from the equiprobability of the four
values of y. Denoting by pk the probability of transmitting
the kth quartet, x ∈ {xk, jxk,−xk,−jxk},

I(x; y|h) = 2−
4Nt−1∑
k=1

pk
4

3∑
i=0

H(y|x = jixk,h) (13)

= 2−
4Nt−1∑
k=1

pkH(y|x = xk,h) (14)

= 2−
4Nt−1∑
k=1

pk

[
H
(
<{y}|x = xk,h

)
+H

(
={y}|x = xk,h

)]
(15)

where (14) follows from the equiprobability and statistical
equivalence of the vectors in each quartet k. Given x and
h, <{y} and ={y} are binary random variables whose
respective probabilities of being ±1, recalling (9), are1

Q

(
±
√

SNR

Nt
<{hx}

)
(16)

and

Q

(
±
√

SNR

Nt
={hx}

)
. (17)

Hence, for arbitrary quartet probabilities {pk},

I(x; y|h) = 2−
4Nt−1∑
k=1

pk

[
Hb

(
Q

(√
SNR

Nt
<{hxk}

))
1Q(−ξ) = 1−Q(ξ).
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+Hb

(
Q

(√
SNR

Nt
={hxk}

))]
. (18)

where

Hb(p) = −p log2 p− (1− p) log2(1− p) (19)

is the binary entropy function.
The mutual information in (18) is maximized by as-

signing transmission probability 1 to the quartet with
the smallest sum of binary entropies; by means of the
four vectors in that quartet, a scalar 2-bit symbol can
be conveyed to the receiver. This gives, for channel h,
a spectral efficiency of

I(SNR,h) = 2−min
k

[
Hb

(
Q

(√
SNR

Nt
<{hxk}

))

+Hb

(
Q

(√
SNR

Nt
={hxk}

))]
. (20)

If h varies in time and/or frequency and the coding
takes place over a sufficiently broad range of variations,
then what is operationally relevant is the ergodic spectral
efficiency [21]

I(SNR) = Eh

[
I(SNR,h)

]
. (21)

Alternatively, if the channel is information stable, i.e.,
stable over each codeword transmission, then I(SNR,h)
has itself operational significance and I(SNR) should
be interpreted as the average spectral efficiency over the
settings described by the distribution of h.

IV. UNSUPERVISED LEARNING APPROACH

The determination of the optimum quartet is a binary
optimization that entails selecting, for each channel h, one
of 4Nt−1 possibilities. This problem can be interpreted as
a parametric optimization, with h being the parameter,
the 4Nt−1 possible transmit quartets being the search
space, and the optimum such quartet being the solution
for the specific instance of the optimization associated
with h. An unsupervised learning approach for parametric
optimization is developed in [20] for implementation on
a feedforward NN. Applied to the problem at hand, this
approach entails:
• Considering h as the input to the NN.
• Defining a loss function based on the objective of

identifying the optimum quartet.
• Iteratively updating the weights so as to minimize

that loss.
No labeled data is required for the training and, after

convergence, the NN approximates the mapping between
h and the optimum transmit quartet.

A. Loss Function

The nature of the search space at hand, consisting of
Nt-dimensional vectors with binary real and imaginary
parts, is incompatible with the gradient back-propagation
required to update the NN weights. To skirt this hurdle,
we relax the search space into that of Nt-dimensional
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Fig. 1: Loss term penalizing solutions as they deviate from having binary
real and imaginary parts.

complex vectors and incorporate to the loss function
a term that favors solutions with near-binary real and
imaginary parts. Precisely, the loss function we minimize
is, recalling (20),

L(x,h,SNR) = −2 +Hb

(
Q

(√
SNR

Nt
<{hx}

))

+Hb

(
Q

(√
SNR

Nt
={hx}

))
+ βLbin(x)

(22)

where

Lbin(x) = [−x− 1]+ + [x+ 1]+

− 2 [x]+ + 2 [x− 1]+ (23)

given

[ξ]+ =

{
0 for ξ ≤ 0
ξ for ξ > 0

(24)

as the rectified linear unit (ReLU) function, applied in
(23) to the real and imaginary parts of each entry of x.
Depicted in Fig. 1, the term Lbin increasingly penalizes
solutions as they deviate from being binary-valued, with
this penalty being modulated by β.

B. Learning Stage

A lean NN is employed, with only three layers whose
numbers of neurons depending on Nt are described in
Table I, along with their type of activation functions.
Assembled into a complex vector, the 2Nt real outputs
produced by the output layer represent x.

For learning purposes, h is repeatedly sampled from its
distribution with a batch size of 5000, and each sample
is assigned a random SNR ∈ [−30, 20] dB. The resulting
tensor, concatenation of h and SNR, is fed to the NN and
L(x,h,SNR) is evaluated for the NN’s output, x. The NN
weights, randomly initialized, are then updated using the
Adam algorithm. The process is repeated 10000 times, and
β is obtained through a cross-validation sweeping from
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TABLE I: Number of neurons per layer depending on Nt. Also indicated
is the type of activation function at each layer.

Nt 2–8 16–32 64–128
Input layer (ReLU activation) 50 100 500
Hidden layer (ReLU activation) 50 100 500
Output layer (linear activation) 2Nt 2Nt 2Nt

TABLE II: Learning parameters depending on Nt.

Nt 2 4 8 16 32 64 128

β 0.05 0.1 0.1 0.1 .1 0.2 0.3
τ (dB) 20 3 0 −3 −6 −9 −12

0.01 to 10; the optimized values are listed in Table II. To
avoid oscillations around local optima during the weight
adjustment, the learning rate—amplitude of the gradient
steps—is reduced gradually from 0.001 down to 0.0001.

At very high SNR, the gradient of Q(·) in (22) vanishes.
Likewise, very small values for that function cause numer-
ical problems when computing the gradient of Hb(·). To
circumvent these issues:
• Q(·) is clipped at 10−5 whenever its value falls

within [0, 10−5], and it is clipped at 1− 10−5 when-
ever its value falls within [1− 10−5, 1].

• During learning, SNR is replaced by

SNRlearn = [−SNR+ τ ]+ + 0.1 [SNR− τ ]+ (25)

where τ is to be set to the value beyond which
the spectral efficiency saturates (see Table II). The
intuition behind this modification of SNR is that
the NN weights optimized for SNR = τ remain
valid thereafter. Once the training is complete, the
actual SNR is used for performance evaluation, as
the gradient is no longer required.

Throughout the learning stage, the continuous nature
of the values of x is respected upon evaluation of the
loss function. Afterwards, for every input h, the output is
clipped to produce xk? representing the selected quartet
for that h.

The pipelines for both the learning and the evaluation
stages are graphically represented in Fig. 2.

NN
Subtract mean and
 divide by standard

deviation

Adam
optimizer

U
pd

at
e 

N
N

 w
ei

gh
ts

1-bit
Clipping

Test
stage

Fig. 2: Learning and evaluation pipelines.
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Fig. 3: Ergodic spectral efficiency vs SNR over an IID Rayleigh-faded
channel. For Nt = 1, 2, 4 and 8: NN (in solid) versus exhaustive search
(in dashed). For Nt = 16, 32, 64, 128, only NN.
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Fig. 4: Average spectral efficiency vs SNR over an LOS channel. For
Nt = 1, 2, 4 8: NN (in solid) versus exhaustive search (in dashed).
For Nt = 16, 32, 64, 128, only NN. The transmit array is a ULA with
dt = λ/2.

V. PERFORMANCE EVALUATION

Presented in Fig. 3 is the ergodic spectral efficiency as
a function of SNR in IID Rayleigh fading. Up to Nt = 8,
we are able to evaluate (20) exhaustively, confirming
the excellent performance of the learning approach. By
about Nt = 16, an exhaustive search becomes prohibitive,
yet the learning approach continues to function. The
figure includes the spectral efficiency for Nt as high as
128, when the number of candidate quartets exceeds a
staggering 1076. The performance improves steadily and
settles onto a 3-dB SNR reduction for every doubling of
Nt, the same beamforming gain that would be attained
with full-resolution DACs and ADCs [22].

A similar set of results is presented in Fig. 4 for an LOS
channel. Since, as mentioned, the array orientation may
change slowly enough that the LOS channel is information
stable over each value of θ, the curves in Fig. 4 are
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Fig. 5: Spectral efficiency vs θ for a LOS channel with Nt = 8 and
SNR = −5 dB. The transmit array is a ULA with dt = λ/2.

best interpreted as the average spectral efficiency over
θ ∈ [0, π/2]. The performance as a function of θ is then
also of interest. For Nt = 8 and SNR = −5 dB, this
performance is illustrated in Fig. 5. Also in this angular
fashion, the performance of the learning approach closely
matches its exhaustive-search counterpart.

VI. EXTENSION TO MULTIPLE RECEIVE ANTENNAS

The learning approach presented hitherto applies also
for Nr > 1, with the channel then being an Nr × Nt

matrix. For rank-1 channels specifically, such matrix can
be expressed as H = σuv∗ where σ is the singular
value and u, v, are the singular vectors. The procedure
laid down throughout the paper to identify the optimum
transmit beamforming quartet of vectors continues to
apply, only with v in place of h.

VII. CONCLUSION

Channel estimation is an important aspect that needs to
be addressed to consolidate the findings in this paper. In
IID fading, Nt complex coefficients have to be estimated
to obtain h. However, in LOS conditions, much more
prevalent at terahertz frequencies, one or two geometrical
parameters suffice to reconstruct h under the premise
of planar wavefronts, and at most four geometrical pa-
rameters suffice with spherical wavefronts [23]. While,
at present, we are feeding the reconstructed h to the
NN, follow-up work will aim at having this handful of
parameters serve directly as inputs to the NN, in lieu of
h. This might allow for even further simplification of the
NN and the learning process.
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