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Abstract—Non-orthogonal multiple access (NOMA) is pro-
posed as downlink precoding scheme in cellular wireless net-
works. Applying multiple antennas at the base station allows
for spatial precoding and spatial multiplexing. In particular,
the capacity region for multiple antenna downlink channels is
achieved by dirty paper precoding (DPC) and time sharing. It
cannot be achieved by linear superposition coding and successive
interference cancellation (SIC). In this work, we investigate the
performance of NOMA in multiple antenna downlink channels.
We show that NOMA cannot achieve the sum capacity except for
parallel channels. Furthermore, we propose an efficient algorithm
to compute the minimum power for DPC with time sharing
under rate constraint. The results are compared with NOMA and
zero-forcing (ZF) precoding. The numerical experiments show
that NOMA requires significantly more transmit power than
DPC. Moreover, the performance gap between ZF precoding and
NOMA highly depends on the SNR region, number of antennas,
and minimum rate demands.

Index Terms—Non-orthogonal multiple access, multiple-input
single-output, broadcast channel, dirty paper precoding, zero-
forcing

I. INTRODUCTION

As the fifth-generation (5G) wireless networks have been
commercialized, it is natural for the researchers to exploit the
potential multiple access techniques in beyond 5G (B5G) and
the sixth-generation (6G) wireless networks. Since spectrum is
scarce resource and the number of mobile devices is steadily
increasing, multiple access techniques for up- and downlink
transmission are most important.

Non-orthogonal multiple access (NOMA) has been recently
proposed for the 3rd generation partnership projects long-term
evolution advanced (3GPP-LTE-A). It constitutes a promising
technology of enhancing the spectral efficiency and achieving
massive connectivity challenges by accommodating several
users within the same orthogonal resource block, via multi-
plexing at different power levels. The information theoretic
properties of NOMA are reviewed in [1] while a short descrip-
tion of the extensions to multiple-antenna cases is included.
One important property for single-antenna single-cell NOMA
systems is that the optimal decoding order for SIC depends
only on the channel gain but not on the transmit strategies,
i.e., transmit power. This follows from the degradedness of
the SISO broadcast channel (BC) [2].

In [3], the application of multiple-input multiple-output
(MIMO) techniques to NOMA is proposed. Precoding and de-

tection matrices are proposed to improve the performance gap
between MIMO-NOMA and conventional orthogonal multiple
access schemes. The concept of signal alignment is applied to
MIMO-NOMA up- and downlink systems in [4]. The optimal
precoding for quality-of-service (QoS) optimization in two-
user multiple antenna NOMA is solved in [5], [6]. Later, in
[7], a comprehensive solution for the design, analysis, and
optimization of a multiple-antenna non-orthogonal multiple
access (NOMA) system for multiuser downlink communica-
tion with both time duplex division (TDD) and frequency
duplex division (FDD) modes is provided. In [8] a review on
multiple antenna techniques for NOMA is presented. Finally,
beamforming design for multiple antenna NOMA systems
by considering a power minimization problem under rate
constraints [9]. The general MIMO BC is not degraded. It
is shown that under specific channel condition, called quasi-
degradation, NOMA has the same performance as DPC. Under
this condition, the optimal decoding order of NOMA and
coding order of DPC are independent from beamforming
and only depend on the channel gains of the multiplexed
users. Therefore, the question whether NOMA can achieve
the capacity region is still open.

In a different approach, the maximization of the achievable
sum-rate with NOMA is considered in [10] where the NOMA
order is prefixed again according to the channel gains. In [11],
clustering and linear beamforming is proposed to cancel the
inter-cluster interference while the users are sorted based on
their channel gains. Another approach for cell-free massive
MIMO with NOMA is introduced in Yikai18.

Recognizing that NOMA does not achieve the capacity in
multiple antenna downlink, a more general approach based on
rate-splitting is proposed in [12]. The rate-splitting approach
is more flexible and can cover spatial division multiple access
(SDMA), NOMA and orthogonal multiple access (OMA) as
special cases. Finally, the efficiency of NOMA in multiple
antenna downlink transmission is studied in [13]. First, it is
shown that NOMA is suboptimal in most operating regions.
Second, alternative schemes, including rate-splitting are sug-
gested to improve significantly the performance.

Motivated by recent studies on the optimality of NOMA,
we consider a simple idealized two-user multiple antenna
downlink transmission. First, we review the capacity region
achieved by dirty paper precoding and time sharing as well as
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the achievable rate regions by NOMA and treating interference
as noise (TIN). Next, we analytically show that NOMA cannot
achieve the sum capacity in general, only if the channels are
parallel. Finally, we derive an algorithm to find minimum
transmit power for given rate requirements. This completes
recent results [9] on the optimality of NOMA for the power
minimization problem to include the complete convex hull
(achieved with time sharing).

A. System Model

We consider the simple two-user multiple antenna downlink
channel including a single BS with n transmit antennas and
single antenna receivers. The transmitter applies a beamform-
ing for each receiver. The beamforming vectors are denoted by
w1,w2. They can be chosen under a transmit power constraint
||w1||2 + ||w2||2 ≤ P . The receiver noise is additive white
Gaussian noise with variance σ2. The received signal at the
i-th receiver is given by

yi = hHi w1x1 + hHi w2x2 + ni, (1)

with noise ni, transmit signals x1 and x2 for receiver 1 and
2, respectively. The channels are denoted by vectors h1,h2.
xH denotes the Hermitian of the vector x.

II. PRELIMINARIES

Here, we review the available results and transceiver
schemes for the multiple-antenna downlink channel. We start
with the capacity region achieved by dirty paper precoding
(DPC), followed by NOMA1 and TIN. Finally, we briefly
mention the duality theory between multi-antenna BC and
multiple access channel (MAC) which helps us to prove our
main results.

A. Dirty Paper Precoding

The capacity region of the multiple antenna BC is derived in
[14]. It is shown that DPC can achieve the capacity region. The
DPC achievable rate region is introduced in [14, Definition 5]
as

RDPC = cv
{ ⋃
π∈Π

RDPC(π, P,h1,h2)
}
, (2)

with Π as the two permutations for the two precoding orders
π1, where user 2 cancels user 1, and π2, where user 1 cancels
user 2. cv{·} denotes the convex closure operator and P as the
average transmit power constraints and RDPC(π, P,h1,h2)
corresponds to the achievable rate region of DPC with precod-
ing order π. We introduce the abbreviation C(x) = log(1+x).
The corresponding achievable rates are for π1 = [1, 2]

RDPC
1 (π1, ρ,h1,h2) = C

(
ρ|hH1 w1|2

1 + ρ|hH1 w2|2

)
, (3)

RDPC
2 (π1, ρ,h1,h2) = C

(
ρ|hH2 w2|2

)
, (4)

1We use the term NOMA to refer to power-domain NOMA.

with tranmit SNR ρ = P
σ2
n

. The achievable rates for π2 = [2, 1]
are given by

RDPC1 (π2, ρ,h1,h2) = C
(
ρ|hH1 w1|2

)
, (5)

RDPC2 (π2, ρ,h1,h2) = C

(
ρ|hH2 w2|2

1 + ρ|hH2 w1|2

)
, (6)

R1

R2

Coding order π2

Coding order π1

Time Sharing

Fig. 1. Capacity region of MISO downlink channel. Coding order π2 in red
colour, coding order π1 in blue color, and the convex hull, i.e., the maximum
sum rate line in magenta. Furthermore, the region in which all rate points are
achieved by maximizing the sum rate are indicated with black lines.

These two achievable rate regions in (3), (4) and (5),(6)
correspond to the red and the blue curves in Figure 1. The
convex closure operator corresponds to the magenta line in
Figure 1. The complete capacity region are all points under
the union of the red, magenta, and blue curves. Note that all
points below the boundary are indicated by the black lines and
the sum rate line and they can be achieved by distributing the
sum rate to the users.

B. Non-Orthogonal Multiple Access

In the considered two-user NOMA, one user tries to fully
decode the message of the other user, subtract it from its
received signal and then decode its own message without
interference. The requirement for this user to be able to decode
the other users’ message results in an additional rate constraint
for the other users’ data rate.

In single-antenna NOMA, the optimal decoding order sim-
ply depends on the received channel-to-noise ratio (CNR).
The user with the better channel gain is able to decode the
other users’ signal independent of the power allocation and
the corresponding rate upper-bound constraint is automatically
fulfilled. The single-antenna broadcast channel is degraded and
this strategy corresponds to the well-known superposition and
successive interference cancellation (SIC) which achieves the
capacity of the degraded broadcast channel [2, Theorem 5.3].

However, multiple-antenna BC are non-degraded and
NOMA does neither achieve the capacity region nor is the
optimal decoding order as simple as in the single-antenna case.
Therefore, it is not sufficient to consider only the order based
on the channel gains ||h1|| ≥ ||h2||. Instead, both NOMA
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orders need to be considered and the following achievable
rates:

RN,π2

1 = C(ρ|hH1 w1|2) (7)

RN,π2

2 = min
{
C
(

ρ|hH
2 w2|2

1+ρ|hH
2 w1|2

)
, C
(

ρ|hH
1 w2|2

1+ρ|hH
1 w1|2

)}
RN,π1

1 = min
{
C
(

ρ|hH
1 w1|2

1+ρ|hH
1 w2|2

)
, C
(

ρ|hH
2 w1|2

1+ρ|hH
2 w2|2

)}
RN,π1

2 = C(ρ|hH2 w2|2) (8)

The complete achievable rate region using downlink NOMA
is given by

RN = cv
{ ⋃

i∈{1,2}
||w1||2+||w2||2≤P

(RN,πi

1 , RN,πi

2

}
. (9)

Therefore, the achievable maximum sum rate RNsum of NOMA
can be written as

max

{
min

{
C(ρ|hH2 w2|2)− C(ρ|hH1 w2|2) +

C(ρ|hH1 w1|2 + ρ|hH1 w2|2),

C(ρ|hH2 w1|2 + ρ|hH2 w2|2)
}
,

min
{
C(ρ|hH1 w1|2)− C(ρ|hH2 w1|2) +

C(ρ|hH2 w2|2 + ρ|hH2 w1|2),

C(ρ|hH1 w2|2 + ρ|hH1 w1|2)
}}

. (10)

C. Treating Interference as Noise

TIN is a simple strategy where point-to-point codes are
reused for smaller SINR values where interference is treated
as noise [2, Section 6.4.3]. For small SNR it is sum capacity
achieving in the interference channel. The achievable rates are
easily computed by

RTIN
i = C

(
ρ|hHi wi|2

1 + ρ|hHi wj |2

)
, 1 ≤ i 6= j ≤ 2, (11)

with corresponding sum rate RTIN
sum = RTIN

1 +RTIN
2 . Within TIN,

the zero-forcing beamforming solution is a special case with

wZF
i =

Π⊥hj
hi

||Π⊥hj
||
, 1 ≤ i 6= j ≤ 2.

The projector onto the orthogonal complement of a space
spanned by x is denoted by Π⊥x .

D. Uplink-Downlink Duality

The sum rate maximization problem in the multiple antenna
BC can be solved by considering the corresponding uplink
problem [15, Lemma 2]

RDPC
sum = max

p1,p2≥0
p1+p2≤1

log det (I + ρp1H1 + ρp2H2) , (12)

with channel matrices H1 = h1h
H
1 and H2 = h2h

H
2 .

Problem (12) is a convex programming problem which can

be easily solved with CVXPY [16], [17]. The corresponding
maximum sum rate points for the two decoding orders in the
dual MAC can be explicitly computed with the optimal power
allocation p∗ as

Rsc1 (π2) = log det (I + ρp∗1H1) (13)

Rsc2 (π2) = log det
(
I + ρp∗2H2 [I + ρp1H1]

−1
)
,(14)

and vice versa for the decoding order π1.
Furthermore in [18], it is shown that each point in the

capacity region of the dual multiple antenna MAC under a sum
power constraint can be achieved by the dual multiple antenna
BC. Interestingly, the SIC decoding order is the reverse DPC
coding order. And there exists a one-to-one mapping between
the strategies that achieve the rate points.

III. OPTIMALITY OF NOMA AND POWER MINIMIZATION

In this section, we present our main results regarding the
optimality of the NOMA and TIN schemes compared to
the capacity achieving DPC with time-sharing. We start with
the sum rate maximization under power constraints and then
present some conclusions for the power minimization under
rate constraints.

A. Sum-Capacity Sub-Optimality of NOMA

Theorem 1. In the two-user multiple antenna downlink trans-
mission, NOMA cannot achieve the sum capacity in general.
Only if both the channels are parallel, i.e., h1 = αh2, α ∈ C,
then NOMA is able to achieve the sum capacity.

Proof. The proof is based on some auxiliary results collected
in the appendix. First, we note that the sum capacity of the
MISO BC can be written by applying the up- and downlink
duality as in (12). While the optimization of the NOMA sum-
rate in (10) with respect to the beamforming vectors w1,w2

is difficult, an upper bound on the sum rate can be written as

RNsum ≤ C(ρp1||h1||2 + ρp2||h2||2), (15)

where the bound is achieved with equality with w1 =
p1
||h1||2h1 and w2 = p2

||h2||2 if h1 = αh2 for some α ∈ C.
The final step is to show that for p1, p2 ≥ 0 (we set ρ = 1 for
convenience) and arbitrary h1,h2 ∈ Cn holds

det (I + p1H1 + p2H2) ≥ (1 + p1||h1||2 + p2||h2||2), (16)

with equality if and only if h1 and h2 are parallel. We start
with the left-hand-side of the inequality and identify A =
I + p1h1h

H
1 and apply the equality (18). In order to compute

A−1 we apply the equality (19):

A−1 =
[
I + p1h1h

H
1

]−1

= I − p1h1h
H
1

1 + p1||h1||2
.
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Using this A−1 in (18), we get

det(A + p2h2h
H
2 )

=

(
1 + p2h

H
2

[
I − p1h1h

H
1

1 + p1||h1||2

]
h2

)
(1 + p1||h1||2)

=

(
1 + p2h2h

H
2 −

p1p2|hH1 h2|2

1 + p1||h1||2

)
(1 + p1||h1||2)

=
(

1 + p2||h2||2 + p1||h1||2

+p1p2(||h1||2||h2||2 − |hH1 h2|2
)

≥ (1 + p2||h2||2 + p1||h1||2), (17)

since ||h1||2||h2||2 ≥ |hH1 h2|2 with equality if and only if h1

and h2 are parallel.

Note that the maximum of the RHS of (15) is
achieved for allocating all power to the better channel, i.e.,
C(ρP max(||h1||2, ||h2||2)).

B. Achievable Rate Regions

In this section, we compare the achievable rate regions by
DPC, NOMA, and ZF, including their convex hulls operation
(time sharing), and by TIN. In order to obtain an efficient
algorithm, we exploit the uplink-downlink duality again. While
ZF has a simple closed-form solution

pZFi =
2Ri − 1

|hiwZF
i |2

, i = {1, 2},

and for NOMA a semidefinite program (SDP) can be found in
[9], we propose the following algorithm to find the minimum
power for DPC.

Data: Rate requirements R1, R2, channels H1,H2

Result: Minimum power required by DPC
Solve minp1,p2 p1 + p2 s.t.
log det(I + p1H1 + p2H2) ≥ R1 +R2 ;

Denote found solution by p∗1, p
∗
2 ;

Define R̄1 = log det(I + p∗1H1) and R̄2 analogue;
if R̄1 < R1 then

Compute p∗1 = 2R1−1
||h1||2 ;

Compute p∗2 s.t. log det(I + p∗1H1 + p∗2H2) ≥
R2 + log det(I + p∗1H1) ;

end
if R̄2 < R2 then

Compute p∗2 = 2R2−1
||h2||2 ;

Compute p∗1 s.t. log det(I + p∗1H1 + p∗2H2) ≥
R1 + log det(I + p∗2H2) ;

end
return p∗1 + p∗2 ;

Algorithm 1: Find minimum power with DPC.

Algorithm 1 first assumes that the rate requirements lie
below the sum rate curve within the marked area in Figure
(1) and computes the minimum sum power such that the sum
rate is larger than R1 + R2. Next, it checks the two black

horizontal and vertical lines. If the rate requirement is outside,
the corresponding Pareto boundary is searched for in the two
if clauses.

Note that Algorithm 1 is not iterative but consists of solving
a simple convex programming problem and two if clauses,
followed eventually by a closed form power allocation.

IV. NUMERICAL ILLUSTRATIONS

A. Sum Rate Comparison

An example of the sum rate comparison between the capac-
ity achieving DPC, the NOMA upper bound from (15), and
TIN is shown in Figure 2.

Fig. 2. Sum rate comparison between DPC, NOMA, and TIN for downlink
transmission with three transmit antennas.

We can observe that the high-SNR slope of the sum rate of
TIN and DPC are equal to 2 with a high-SNR power offset
of about 2 dB, while the high-SNR slope of NOMA is 1. The
reason for this behavior is shown in the inequality (16). The
spatial multiplexing gain is visible on the LHS of (16) while
it is lost on the RHS of (16).

B. Achievable Rate Regions

Next, we perform numerical experiments with the power
minimization problem and compare the minimum power
achieved with DPC, NOMA and TIN using ZF. We assume
the same rate requirements for both users and the value on
the x−axis correspond to the rate requirement. 1000 channel
realizations are randomly generated according to a Rayleigh
distribution to compute the average minimum power.

The results in Figure 3 show that DPC significantly out-
performs the two other schemes NOMA and TIN. Depending
on the number of antennas, ZF outperforms NOMA for more
transmit antennas, because of the spatial degrees of freedom.
For higher rate requirements, ZF will also outperform NOMA.
This illustrates that depending on the number of antennas,
the rate requirements and the channel realizations, NOMA is
outperformed by TIN with ZF or not.
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Fig. 3. Minimum power comparison between DPC, NOMA, and TIN for
downlink transmission with two and three transmit antennas.

V. CONCLUSIONS AND FUTURE WORK

In order to choose multiple access schemes for the mul-
tiple antenna downlink transmission, we have considered the
capacity achieving scheme DPC including time sharing. The
first important observation is that time sharing is required to
achieve the complete capacity region for the multiple-antenna
downlink channel. This is in stark contrast to single-antenna
downlink transmission where linear superposition coding com-
bined with simple SIC according to the order of channel
gains, can achieve the capacity. This scheme corresponds to
NOMA. In the multiple antenna case with two users, we
show that NOMA cannot achieve the sum capacity expect
for parallel channel realizations. Furthermore, we propose a
fast algorithm to compute the minimum power to support
rate requirements for the capacity region, and compare the
results to NOMA and TIN with ZF. The results indicate
that in multiple antenna channels, NOMA usually does not
achieve the minimum power and the loss compared to the
capacity achieving scheme grows with number of antennas and
with higher rate requirements. The extension of the presented
results to more than two users is straightforward and our
current work.

APPENDIX

Here, we review two lemmas useful for the proof of our
main results. The following lemma can be found e.g. in [19,
Lemma 1.1]

Lemma 1. If A is an invertible n × n matrix, and v is an
n-dimensional column vector, then

det
(
A + vvH

)
= (1 + vHA−1v) det(A). (18)

The other results that we apply is a simple variant of the
the Sherman-Morrison-Woodbury-formula [20, Section 0.7.4]:

Lemma 2. For any column vector v(
I + vvH

)−1
= I − vvH

1 + ||v||2
. (19)
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